

Art Tennick

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore
Sydney Toronto

PRACTICAL
PowerPivot

& DAX FORMULAS
FOR EXCEL 2010

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-174686-1

MHID: 0-07-174686-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174685-4,

MHID: 0-07-174685-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy,
or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of
such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and
to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work
is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK
VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licen-
sors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or
cause arises in contract, tort or otherwise.

For those who helped along the way—G.T.L. Chapman,
Guy C. Routh, Brian Smart, and Wendy Rinaldi

About the Author
Art Tennick (Brighton, U.K.) has worked in relational database design, SQL
queries, and spreadsheets for over 20 years. He has been involved in pivot tables,
multidimensional database design, cubes, data mining, and DMX and MDX queries
for 10 years. Based in the United Kingdom, he has been a software consultant,
trainer, and writer for some 25 years. Recently, he has worked with several major
retail and banking corporations to implement BI solutions using Microsoft SQL
Server, SSAS, SSIS, SSRS, PowerPivot, DAX, and Excel 2010. This is his twentieth
book and he has also written over 300 articles for computer magazines in the United
States, the United Kingdom, and Ireland. His web site is www.MrCube.net.

About the Technical Editor
Olivier Matrat is a Senior Program Manager with the Microsoft SQL Server group,
and one of the founding members of the engineering team behind PowerPivot.
He has worked in business intelligence for 15 years, holding various technical roles
in software and consulting companies, before becoming the founding CEO of a
leading French Microsoft Gold Partner for BI, a position he held until joining
Microsoft four years ago. Olivier lives with his wife and their daughter in Redmond,
Washington, in the United States.

v

Contents
Foreword . xv

Acknowledgments . xix

Introduction . xix

Part I PowerPivot

Chapter 1 PowerPivot: Quick Start . 3

Chapter 2 PowerPivot: Overview . 19
Starting PowerPivot . 20
Importing from SQL Server . 26
Importing from Access . . 31
Importing from Excel . 34
Importing from a Data Feed . 37
PowerPivot Window . . 37
Checking Relationships . 43
Adding Columns . 46
A Quick Pivot Table . . 50
A Very Quick Pivot Chart . . 57

Chapter 3 PowerPivot: In-Depth . 61
PowerPivot Ribbon in Excel . . 63

Launch Group . 63
Measures Group . . 63
Report Group . 63
Excel Data Group . 64
Options Group . . 66
Show/Hide Group . . 66
Relationship Group . . 67

Home Ribbon in PowerPivot . 67
Clipboard Group . . 67
Get External Data Group . 68
Reports Group . . 90

v i P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Formatting Group . . 91
Sort and Filter Group . 92
View Group . 93

Design Ribbon in PowerPivot . . 93
Columns Group . 93
Calculations Group . 95
Connections Group . 96
Relationships Group . 97
Properties Group . 101
Edit Group . 104

Linked Table Ribbon in PowerPivot . 104
Linked Tables Group . 105

Chapter 4 DAX: Overview . 107
What Is DAX? . 108
Where to Write DAX . 109

Calculated Columns . 109
Measures . . 112

How to Write DAX . 114
Operators and Operator Precedence . 116
Data Types . . 117
Null Values . . 117

Why Use the RELATED() Function? . . 118
Why Use the CALCULATE() Function? . 123
Where to Go from Here . 134

Chapter 5 Pivot Tables and Pivot Charts: Overview . 135
Background to Pivot Reports . 136
Pivot Tables . . 137

Creating a Pivot Table . 137
PowerPivot Field List for Pivot Tables . 140
Slicers for Pivot Tables . 149
Pivot Table Menus and Ribbons . 151

Pivot Charts . 178
Creating a Pivot Chart . 178
PowerPivot Field List for Pivot Charts . 178
Slicers for Pivot Charts . 179
Pivot Chart Menus and Ribbons . . 179

C o n t e n t s v i i

Part II DAX

Chapter 6 Fundamental Functions: Filter, Logical, and Miscellaneous Functions 191
ALL() 1/7 . 192
ALL() 2/7 . 194
ALL() 3/7 . 195
ALL() 4/7 . 196
ALL() 5/7 . 197
ALL() 6/7 . 198
ALL() 7/7 . 200
ALLEXCEPT() 1/2 . 201
ALLEXCEPT() 2/2 . 202
ALLNOBLANKROW() . 203
AND() . 205
BLANK() . 205
CALCULATE() . 206
CALCULATETABLE() . 208
DISTINCT() . . 209
EARLIER() . 210
EARLIEST() . . 211
FALSE() . 212
FILTER() . 213
IF() . 214
IFERROR() . 215
ISBLANK() . 215
ISERROR() . 216
ISLOGICAL() . 217
ISNONTEXT() . 218
ISNUMBER() . . 219
ISTEXT() . 219
NOT() . . 220
OR() . 221
RELATED() . . 221
RELATEDTABLE() . 222
TRUE() . 223
VALUES() . 224

v i i i P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Chapter 7 Aggregate Functions: Statistical Functions and SUM()/SUMX() Functions . . . 227
AVERAGE() . 228
AVERAGEX() . . 229
AVERAGEA() . . 230
COUNT() . 231
COUNTX() . 231
COUNTA() . 232
COUNTAX() . 233
COUNTBLANK() . 234
COUNTROWS() . 234
MAX() . 235
MAXX() . 236
MAXA() . 236
MIN() . . 237
MINX() . . 238
MINA() . . 238
SUM() 1/2 . 239
SUM() 2/2 . 240
SUMX() . 240

Chapter 8 Date & Time Functions 1/2: Basic Functions . 243
DATE() . 244
DATEVALUE() . 245
DAY() . . 246
EDATE() . 247
EOMONTH() . 247
HOUR() . . 248
MINUTE() . 249
MONTH() . 250
NOW() . 251
There Is No QUARTER() . 252
SECOND() . 253
TIME() . 254
TIMEVALUE() . 255
TODAY() . 256
WEEKDAY() . 256
WEEKNUM() . . 257
YEAR() . 258
YEARFRAC() . 259

C o n t e n t s i x

Chapter 9 Date & Time Functions 2/2: Time Intelligence Functions 261
CLOSINGBALANCEMONTH() . . 264
CLOSINGBALANCEQUARTER() . . 265
CLOSINGBALANCEYEAR() . 266
DATEADD() . 267
DATESBETWEEN() . 269
DATESINPERIOD() . 270
DATESMTD() . 271
DATESQTD() . . 272
DATESYTD() . 274
ENDOFMONTH() . 275
ENDOFQUARTER() . 275
ENDOFYEAR() . 276
FIRSTDATE() . . 277
FIRSTNONBLANK() . 278
LASTDATE() . 279
LASTNONBLANK() . 281
NEXTDAY() . 282
NEXTMONTH() . 283
NEXTQUARTER() . 284
NEXTYEAR() . 285
OPENINGBALANCEMONTH() . 285
OPENINGBALANCEQUARTER() . 286
OPENINGBALANCEYEAR() . 287
PARALLELPERIOD() . . 288
PREVIOUSDAY() . . 289
PREVIOUSMONTH() . 290
PREVIOUSQUARTER() . 291
PREVIOUSYEAR() . 292
SAMEPERIODLASTYEAR() . 293
STARTOFMONTH() . 294
STARTOFQUARTER() . 295
STARTOFYEAR() . . 295
TOTALMTD() . 296
TOTALQTD() . . 297
TOTALYTD() . 298

x P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Chapter 10 Text Functions . 301
CONCATENATE() 1/2 . 302
CONCATENATE() 2/2 . 303
EXACT() . 304
FIND() . 305
FIXED() . . 306
FORMAT() . 307
LEFT() . 309
LEN() . . 309
LOWER() . . 310
MID() . . 311
REPLACE() . . 312
REPT() . 312
RIGHT() . 313
SEARCH() . 314
SUBSTITUTE() . 315
TRIM() . 315
UPPER() . 316
VALUE() . 317

Chapter 11 Math & Trig Functions . 319
ABS() . . 320
CEILING() . 321
EXP() . . 322
FACT() . 322
FLOOR() . 323
INT() . 324
ISO.CEILING() . 325
LN() . 326
LOG() . . 327
LOG10() . 328
MOD() . 329
MROUND() . 330
PI() . 331
POWER() . . 332
QUOTIENT() . 333
RAND() . . 334
RANDBETWEEN() . . 335

C o n t e n t s x i

ROUND() . . 336
ROUNDDOWN() . . 337
ROUNDUP() . 338
SIGN() . 339
SQRT() . 340
SUM() . 341
SUMX() . 342
TRUNC() . 343

Part III PowerPivot and DAX Applied

Chapter 12 A Few Ideas: PowerPivot and DAX Solutions . 347
Do You Have a Problem on Dates? . 348

Parsing Dates . 349
Separate and Contiguous Date Table . . 350
Sorting on Dates . 354

Numbers That Don’t Add Up . 359
Classic BI Solutions . . 362

Percentage of All . 362
Percentage of Column or Row Total . 363
Percentage of Parent . . 365
Customizing Measures for Each Row or Column . 365
Changes over Time . 367
Moving Average . 367
Running Total—Breaking . 368
Running Total—Non-Breaking . 368

Predefining Filters and Sets . . 370
Predefined Filter . 371
Predefined Set . 371

PowerPivot Without Pivot Table Data . . 376
GETPIVOTDATA() . 376
CUBE() Functions . 377

Self-Joins . 379
Data Mining . . 380
SSRS . 380
SharePoint . 380
Is It Really a Cube? . 380
How Old Is Nancy? . 381

x i i P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Part IV Appendixes: Queries for PowerPivot

Appendix A SQL Queries for PowerPivot . 385
Why Write SQL Queries? . . 386
Where to Create and Test SQL Queries . 387
Where to Use SQL Queries in PowerPivot . 387
SQL Examples . . 389

Selecting Specific Columns . 390
Using a T-SQL Function . 390
Suppressing Duplicates . 391
Creating Buckets . 391
Implementing a Filter . 392
A More Complex Filter . 392
Using Wildcards . . 393
Sorting Records . 393
Denormalizing Data . 394
Self-Join . 394
Grouping Data . . 395
Stored Procedure . 395

SQL Queries for Excel . . 396

Appendix B MDX Queries for PowerPivot . 399
Why Write MDX Queries? . 400
Where to Create and Test MDX Queries . 400
Where to Use MDX Queries in PowerPivot . 401
MDX Examples . 402

A Basic MDX Query . 402
A Basic MDX Query Rewritten to Give Better Results . . 403
Adding Another Dimension . 404
Adding Another Dimension Rewritten to Give Better Results 404
Crossjoin() Query . 404
More Complex Crossjoin() Query . 405
More Complex Crossjoin() Query Rewritten to Give Better Results 406
A Navigation Query . . 407
A Range Query . 407
A Range Query Rewritten to Give Better Results . 408
Attribute or User Hierarchies? . . 408

C o n t e n t s x i i i

Sorting Results on a User Hierarchy . 409
Sorting Results on an Attribute Hierarchy . . 409
Filtering Results . . 410
A Calculated Measure . 410
KPI Query . 411
KPI Query Rewritten to Give Better Results . 411

Appendix C DMX Queries for PowerPivot . 413
Why Write DMX Queries? . 414
Where to Create and Test DMX Queries . 414
Where to Use DMX Queries in PowerPivot . 416
DMX Examples . 418

Cases Query: Nested Table Failure . 419
Cases Query: Flattened Table Success . 420
Cases Query on Specific Columns . 420
Content Query with DMX Subquery . 421
Content Query with Embedded Single Quotes . 422
Prediction Query with Embedded Single Quotes . 423
Prediction Forecast Query with Embedded Single Quotes 424
SQL Used to Format and Manipulate the DMX Result Set 425

Index . 427

This page intentionally left blank

xv

Foreword

PowerPivot: What a name! Or I should really say what’s in a name? Powerful
Pivoting? Pivot-table for power users?

PowerPivot is a lot more than that. When I started the PowerPivot project back in
2007, along with Amir Netz (Microsoft BI Distinguished Engineer), the incubation
project was called BI Sandbox. We had been looking at a problem that had often
been raised to us by IT people over years of trying to implement a BI system with
both Microsoft and non-Microsoft software. How could they set up an environment
to enable their business users to build their own BI applications without needing
assistance from IT? They wanted to focus on building the right data store for the
enterprise, secure it, and ensure its quality, but also get out of the business of building
one-off applications or reports for business users. And thus the BI Sandbox project was
born. We would build an environment for users to play (sandbox) and do what they
needed to do without needing to rely on IT folks to build it for them. Now IT would
provide and provision the infrastructure and data source access, but they wouldn’t need
to get involved in the building work for the application itself. This did make a lot of
sense as business users understand their needs better than anyone else and often don’t
have the patience or simply the luxury of time to wait for IT to queue this project
behind all the other ones and build it three to six months later. So we had our vision
and a real problem to solve.

The next question was: how do we do that? Well let’s see, IT is focused on building
ERPs, SharePoint farms, Enterprise Data warehouses… Users, on the other end, are
busy trying to learn and use what reporting and analytical application IT gives them,
or more often ignore it and build whatever they need to do in a tool familiar to them.
And what is the most often used tool by users to answer any sort of data- or BI-related
questions? Excel, Excel, Excel… followed by Access, which is actually a fairly distant
second. Users love Excel. IT often hates Excel. Excel is bad, Excel is uncontrolled,
Excel’s data is bad, unsecured, and unreliable. We’ve even heard some IT folks talking
about “Excel Hell.” But users love it and build very sophisticated and complex
applications with it. Let’s face it. Most companies worldwide run on Excel today.
Whether you know it or not, parts of your business, and often critical parts of your
business, are managed by an Excel-based application built by an analyst or power user
and running on someone’s desktop. So after hundreds of discussions with users and IT,

x v i P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

we realized that there was no way users would ever drop Excel. Even if we gave them
something else, they would keep using Excel behind the scene as a shadow application.
All users ask is that whatever tool you give them has one and only one feature: Export
to Excel. That feature is the only common denominator between every single data or
BI software tools on the planet today! So that is when we had our “Ah-ha” moment:
Let’s not fight Excel; let’s embrace it! The way to build the BI sandbox is to provide an
Excel-based environment for users to do what they need, better than the way they do
it with raw Excel. But—and here was the critical moment—let’s make sure that when
users use this environment, it is in an IT-managed workspace or infrastructure.

And here the concept of Managed Self-Service BI was born. Self-Service BI has
been there forever—whether called by that name or not, it has been there. But before
PowerPivot, Self-Service equated to tools enabling users to build tons of disconnected,
uncontrolled, unmanaged islands of data. We wanted the BI Sandbox environment
to be attractive to business users: We wanted to make it super easy to load data from
enterprise and non-enterprise data sources or from structured and non-structured
data sources, to build models using Excel language and formulae, and to build reports
using Excel Pivottable and Pivotchart or any other BI tools (Reporting Services,
PerformancePoint, or any third-party tool that knows how to talk MDX). But we
also wanted to make sure that when this happened, the business users’ work in this
environment would be properly saved and backed up, and the data would be refreshed
regularly from the data sources so that the data didn’t become stale. We also wanted
to make it easy for people to collaborate with this work without duplicating these
workbooks all over the place in the file or email systems; and we also wanted to be able
to provide usage pattern statistics. Now this would make it both valuable to business
users as well as IT. What if IT were able to have knowledge of the existence of these
“special workbooks,” know what data sources they use, and when they are refreshed?
And more importantly, what if IT knew when the refresh failed and why, who is using
the data sources, how big they are, and how many people are using them, so that they
can ensure that these models live on the appropriately provisioned machines, but can
do all of this without necessarily even having access to the content of the workbooks
themselves? Because, after all, these workbooks are the users’ property and none of
IT’s business. Now that is “Managed Self-service BI.” And because of the duality of
this value proposition both to the IT and business users, we needed a new name. Twin
values to the two big population categories in an enterprise: The IT folks and the
business user folks. And that is how the Gemini code name was born: The Twins.

So now you know all about the history and value proposition of this project, which
grew from within a few folks’ minds in 2007 (including Olivier Matrat, who was the
first program manager on the project and who also tech edited this book) to what it
became when we released it with SQL Server 2008 R2 in 2010. This book focuses

F o r e w o r d x v i i

mostly on introducing the reader to the bells and whistles of the PowerPivot add-in for
Excel. It does an excellent job of walking the reader through every single capability,
highlighting its value and providing many different examples of how to best use it. This
book will be handy at first when you are using the first few chapters to get a handle
on the tool and get started, but it will remain very handy for years when new business
questions arise and you need to build a specific business rule or logic and you need a
specific function, as this book does an excellent job highlighting how to best use all
the Excel-like functions as well as all the new PowerPivot functions, such as Time
navigation functions or even table lookup type functions. This book might start on a
night table but will most likely migrate and remain on the desk at work for months
to come. I hope you will enjoy its reading as much as we have enjoyed building this
product and all of the capabilities you will discover through this book.

Thierry D’hers
Group Program Manager

Microsoft SQL Server Business Intelligence

This page intentionally left blank

xix

Acknowledgments
As always, I am indebted to Wendy Rinaldi, my editor at McGraw-Hill, who manages
to keep me on track, and is a source of inspiration when I am floundering. I would like
to extend my sincere thanks to Olivier Matrat for his invaluable assistance as technical
reviewer of the book. Olivier is one of the main folks at Microsoft responsible for
this wonderful product called PowerPivot for Excel. Many people were involved in
producing this book, as well as my other books for McGraw-Hill. Thank you—Joya
Anthony and Patty Mon at McGraw-Hill; Vasundhara Sawhney, Deepti Narwat
Agarwal, Madhu Bhardwaj, and Smita Rajan at Glyph International; Melinda Lytle,
Bart Reed, Laura Bowman, Karin Arrigoni, George Anderson, and Jeff Weeks at
various places. I am also grateful for the help received from numerous patient people at
Microsoft who tolerated my questions.

Introduction

PowerPivot and DAX
PowerPivot for Excel 2010 helps you to extract real, actionable Business Intelligence
(BI), and increase effective decision making. It’s ideal for the average Excel user—and
it’s a non-developer entry point into BI. This is BI for the masses. Furthermore,
PowerPivot for Excel is a free download from www.powerpivot.com.

BI is wonderful. However, implementing BI solutions (before PowerPivot) is not for
the faint-hearted. Traditionally, the first step is to build a relational star schema database
(possibly in SQL Server), and then to construct an SSAS (SQL Server Analysis
Services) cube from the star schema. Building a star schema requires an understanding
of SQL Server (or Oracle, or DB2, or MySQL), the SQL language, and quite often
the ability to develop SSIS (SQL Server Integration Services) packages to do all the
heavy lifting. In addition, the user has to know SSAS well in order to design useful
cubes. Often, knowledge of SSRS (SQL Server Reporting Services) and/or the MDX
(MultiDimensional Expressions) query language is required in order to extract the data.

Implementing BI (before PowerPivot) is certainly not easy and usually requires
developer experience and expertise in lots of skill sets. A traditional BI solution can take
months to implement. With PowerPivot for Excel, the average Excel user or power user
can have a BI solution within minutes. All that’s needed is some familiarity with Excel.

x x P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The incredible capabilities of PowerPivot can, optionally, be extended and refined
with DAX (Data Analysis Expressions). DAX is a new language for extracting business
intelligence within the familiar environment of Excel, and much of it is similar to already
well-known Excel functions. DAX is part of PowerPivot. It’s ideally suited for Excel
users and power-users, and requires no knowledge of the rest of Microsoft’s BI stack. If
the user is comfortable in Excel, they will be up and running with DAX functions and
formulas, and impressive pivot table and pivot chart results, within a few minutes.

This book is an introduction to PowerPivot for Excel, and the DAX language.
The first half concentrates on PowerPivot using the graphical interface, while the
second half is mostly DAX. The book is practical and hands-on, with a minimum of
concepts and theory. There are over 250 DAX formulas in the book—all downloadable
from www.mhprofessional.com/computingdownload. It’s aimed at Excel users, Excel
professionals, non-developers and developers, report designers, Excel power users,
decision makers, and all business intelligence professionals. The DAX formulas can
be used immediately in a corporate business intelligence environment and/or easily
customized for a specific business need.

Prerequisites
You will need Excel 2010, either 32-bit or 64-bit. You will also need PowerPivot for
Excel (32-bit or 64-bit to match your version of Excel 2010). PowerPivot for Excel
(either 32-bit or 64-bit) is a free download from www.powerpivot.com. You don’t
need SQL Server, or SharePoint, or PowerPivot for SharePoint to follow all the text,
screenshots, examples, and practicals in this book.

DAX Formulas Download
The source DAX for all the formulas in this book is available for download. You can
simply copy and paste into your DAX calculated columns or calculated measures to save
you some typing (even with AutoComplete, you still have to type the occasional closing
parenthesis and comma). You can download the source DAX formulas from www
.mhprofessional.com/computingdownload.

Sample Excel Data Download
Over 99 percent of the PowerPivot and DAX text, screenshots, examples, and practicals
in this book use the good old Northwind database. If you have SQL Server, you can
use the SQL Server version of Northwind. If you don’t have SQL Server, you can use
the pre-Access 2007 version of Northwind. As of this writing, both of these versions of
Northwind are still available for download from www.microsoft.com. Alternatively, you

I n t r o d u c t i o n x x i

might want to try an Excel version of Northwind. An Excel version can be downloaded
from this book’s Web site at www.mhprofessional.com/computingdownload. The
workbook is called Northwind.xlsx. There is, again as of this writing, a freely available
data feed version of Northwind. The URL for this data feed is given in Chapter 2,
when importing data from a data feed is discussed.

Full instructions of how to load SQL Server Northwind into PowerPivot are given
in Chapter 1. Full instructions of how to load the Access or Excel or data feed versions
of Northwind are given in Chapter 2. Chapter 2 also shows how to connect to the data
feed version.

Acronyms

BI Business Intelligence

BIDS SQL Server Business Intelligence Development Studio

DAX Data Analysis Expressions

DMX Data Mining Extensions

KPI Key Performance Indicator

MDX MultiDimensional Expressions

SQL Structured Query Language

SSAS SQL Server Analysis Services

SSIS SQL Server Integration Services

SSMS SQL Server Management Studio

SSRS SQL Server Reporting Services

XMLA XML for Analysis

Chapter Content

Part I: PowerPivot

Chapter 1—PowerPivot: Quick Start This is a short “quick start” chapter. It shows
just how easy it is to create business intelligence (BI) with PowerPivot for Excel.
Essentially a practical chapter, it does not contain much by way of theory or concepts—
these are introduced gradually throughout the rest of the book. The chapter shows how
to build quite a sophisticated pivot table in just a few minutes.

x x i i P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Chapter 2—PowerPivot: Overview Chapter 1 was a very quick introduction
to PowerPivot for Excel. It concentrated on importing data from SQL Server. This
chapter takes a more detailed look at data import from SQL Server. It also shows
how to import data from Access, Excel, and data feeds. You are shown relationships
between PowerPivot tables and how to set them up, if they are missing. DAX (Data
Analysis eXpressions) is used to create both calculated columns in PowerPivot tables
and measures in PowerPivot pivot tables in Excel. In addition, a measure is added
through the GUI, without the need for DAX. You get to construct a sophisticated pivot
table and a pivot chart linked to the pivot table. Various ways of filtering data in a pivot
report (pivot table or pivot chart) are introduced. This chapter consolidates and extends
the example in the previous chapter. It should give you a good overview of some of
the main features and capabilities of PowerPivot. Subsequent chapters build upon this
chapter—in particular, the next chapter is a full in-depth look at PowerPivot.

Chapter 3—PowerPivot: In-Depth This chapter goes a lot further than the previous
two introductory chapters. It’s a detailed and comprehensive guide to all of the ribbons:
Excel PowerPivot ribbon, PowerPivot Home ribbon, PowerPivot Design ribbon,
PowerPivot Linked Table ribbon. All of the ribbon groups and buttons are discussed,
some with step-by-step examples for you to follow. In the course of this chapter, you
will become familiar with most of the dialog boxes and menus that are relevant to
PowerPivot. This is essentially a grand tour of the PowerPivot graphical user interface.
Everything you are likely to meet in a PowerPivot window is covered. The DAX
language is introduced only briefly—Chapter 4 is specifically devoted to DAX. Later in
the book there are also many chapters providing a reference guide to DAX syntax. Pivot
table manipulation and customization is covered in Chapter 5.

Chapter 4—DAX: Overview DAX (Data Analysis eXpressions) is a new language
that makes its debut with PowerPivot for Excel. It is a language designed to use
formulas, which in turn are based on one or more DAX functions. Some of its functions
will look familiar to veteran Excel users, although there are differences between DAX
and Excel functions. These differences are elaborated in this chapter. You get to see
where and how to write DAX functions and formulas and there are a number of
examples to try. The all-important concept of filter context is discussed in detail. Other
topics include data types and operator precedence. Two of the most popular functions,
RELATED() and CALCULATE(), are covered in depth. The difference between
DAX calculated columns and DAX measures is explained. Hopefully, there is enough
DAX in this overview chapter to get you started. The second part of this book provides
a comprehensive reference, with examples, of all the DAX functions.

I n t r o d u c t i o n x x i i i

Chapter 5—Pivot Tables and Pivot Charts: Overview This chapter is concerned
with looking at pivot reports—that is, pivot tables and pivot charts. The chapter is an
overview; a whole book could easily be written about pivot tables in Excel, and another
one just on pivot charts! The emphasis here is on creating pivot tables and charts. The
most important focus is on how to add data to a pivot report using the PowerPivot
Field List. But, once this is done, there are dozens of context menus, drop-down menus,
and quite a few ribbons with dozens of buttons. Some of these are explored in this
chapter, especially where they are particularly relevant to working with PowerPivot.
These menu options and buttons help you organize, control, and format your pivot
reports. By the end of the chapter, you should be in a position to create meaningful and
attractive pivot tables and charts.

Part II: DAX

Chapter 6—Fundamental Functions: Filter, Logical, and Miscellaneous
Functions This is a wide-ranging chapter on some of the fundamental DAX
functions. It includes syntax and examples for all of the Filter functions and all of the
Logical functions. In addition, it discusses some uncategorized functions—these are
often referred to as information or IS() functions. An example is ISBLANK(). There
is also one Text function, BLANK(), which has been added here because of its close
relationship to ISBLANK(). The Filter functions, in particular, are extremely powerful.
Among other things, they allow you to override the filter context that a user chooses
in a pivot table. They help to display classic BI values such as “percentage of parent” or
“percentage of all.” Some of the examples are shown as calculated columns, others as
measures. With measures, in particular, your results may differ from those shown in the
screenshots, as there a few different incarnations of Northwind—not always with the
same data!

Chapter 7—Aggregate Functions: Statistical Functions and SUM()/SUMX()
Functions The aggregate functions include the Statistical functions and both SUM()
and SUMXX() from the Math & Trig functions. Such functions often result in numeric
values. The functions can be used equally well as calculated columns or as measures.
If used as calculated columns, they are often added to the Values drop-zone in the
PowerPivot Field List and displayed in the central data area of a pivot table. They
are ideally suited for producing totals and subtotals. In this chapter, the alphabetical
order of the functions has not been observed completely. For example, AVERAGEX()
appears before AVERAGEA(), but after AVERAGE()—this is to highlight the
difference between a base column function, such as AVERAGE() and its table function
equivalent, AVERAGEX(). AVERAGEA(), another column function, then follows.

x x i v P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

In general, the X-functions, for instance, AVERAGEX(), accept a table argument. The
base functions, like AVERAGE(), accept a column argument, and operate on numeric
or date values. The A-functions, for example, AVERAGEA(), also accept a column
argument, but usually work on every value in a column, even text and blank values.

Chapter 8—Date & Time Functions 1/2: Date and Time Basic Functions For
the purposes of clarity, the Date & Time functions in DAX have been divided into
two chapters. This is the first of those two chapters and deals with the more basic date
and time functions. The next chapter is devoted to a group of Date & Time functions
that are often referred to as time intelligence functions. The basic functions are often
simpler and more forgiving. The time intelligence functions usually require that you
have put some thought into how your dates are stored in the PowerPivot model. The
emphasis in this chapter is on parsing, manipulating, and returning dates. The basic
functions generally return dates and times. The time intelligence functions generally
return measures or values associated with dates and times.

Chapter 9—Date & Time Functions 2/2: Time Intelligence Functions This is
the second chapter dealing with DAX Date & Time functions. The previous chapter
discusses some of the basic Date and Time functions. In this chapter, the emphasis is
on the time intelligence Date and Time functions. The time intelligence functions are
primarily used to navigate dates. In particular, they allow you to jump ahead or back in
time and retrieve relevant data. This is useful if you wish to compare your data across
or between time periods. Practical applications would include year-on-year changes.
They allow you to compare the present date, in your filter context, with past and future
dates. In addition, these functions can help you define ranges of dates or dates up to
a particular date. A practical application here might be year-to-date sales. The basic
functions generally return dates and times. The time intelligence functions generally
return measures or values associated with dates and times.

Chapter 10—Text Functions This chapter deals with text (or string) manipulation.
Most of the text functions are the same as their Excel function equivalents; however,
they accept text or column parameters rather than worksheet cells or ranges. Many
of these text functions return text, and as such are usually more suitable for creating
calculated columns in PowerPivot tables rather than measures—text values can’t be
added together to give subtotals and totals in a pivot table (unless you do a COUNT()).
Having said that, if the text value can be converted into a number (for example the string
“123”), then it may be used as an additive measure. Usually, PowerPivot will implicitly do
the conversion, but you can always do it explicitly with the VALUE() function. Please
note, the FORMAT() text function also operates against numbers as well as against text.

I n t r o d u c t i o n x x v

Chapter 11—Math & Trig Functions This is the final chapter dealing with DAX
functions and formulas. It deals with the Math & Trig functions. However, you won’t
find any trigonometric functions, as such—expect these to appear in a later version
of PowerPivot for Excel. Some of the functions, for example, EXP() and LN(), are
probably for specialized use only. However, many of the others are going to be very
popular—particularly, the eight functions devoted to rounding numbers. SUM() and
SUMX() are Math & Trig functions, although they have much in common with the
Statistical functions as well. They were both covered in an earlier chapter on aggregate
functions (that is, Statistical functions with SUM() and SUMX()), but are mentioned
here again for completeness. In any case, SUMX() is worth a second look, as it’s going
to be very useful in many BI situations.

Part III: PowerPivot and DAX Applied

Chapter 12—A Few Ideas: PowerPivot and DAX Solutions The real world is
the real world. Software, and books about software, can only give you “out-of-the-box”
solutions easily. Real-world solutions require a bit more work. This chapter presents
a few ideas for moving beyond “out-of-the-box” answers. It is all about implementing
PowerPivot and DAX to deal with common business problems. The three appendixes
that follow this chapter have a narrower focus: how to write SQL, MDX, and DMX
queries for assembling data in your PowerPivot model. In contrast, this chapter is more
concerned with using DAX and the PowerPivot GUI to provide solutions, once you
already have the data in place. That said, there is a little on importing data to address
the problem of working effectively with dates and dealing with self-joins.

Working with dates can lead to a number of problems—some of these are addressed
here. There are also a few “classic” BI solutions in this chapter—percentage of total and
subtotal, running totals, changes over time, moving averages, suppressing totals for non-
additive numbers, dealing with semi-additive numbers, customizing DAX formulas for
individual rows or columns, predefining filters, predefining Column Labels and Row
Labels with named sets, working without pivot tables, sharing your pivot reports with
others through SharePoint, and a few other things.

Part IV: Appendixes: Queries for PowerPivot

Appendix A—SQL Queries for PowerPivot This is a short appendix. It’s aimed
at those readers who need a brief introduction to SQL, with some basic syntax
examples. We also discuss the reasons for writing your own queries to import data into
PowerPivot, rather than simply importing complete tables. A few query fundamentals
are covered: filtering, sorting, grouping, and denormalizing data with joins and self-joins.
There are also examples of using a stored procedure and writing SQL against Excel.

x x v i P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Appendix B—MDX Queries for PowerPivot MDX (MultiDimensional
eXpressions) is a very powerful query language for extracting data from cubes. While
PowerPivot can generate sophisticated MDX for you, you may want the total control
that writing your own MDX gives you. You can use MDX to import from either
an SSAS cube or a PowerPivot model that has been published to PowerPivot for
SharePoint. This appendix demonstrates some of the fundamentals of MDX. It also
shows how best to adapt your MDX for PowerPivot.

Appendix C—DMX Queries for PowerPivot You may have SSAS data mining
structures and data mining models. You normally query these objects using DMX
(Data Mining eXtensions), perhaps from SSMS (SQL Server Management Studio)
or from SSRS (SQL Server Reporting Services). Although this release of PowerPivot
supports the graphical design of SQL and MDX queries, it does not support the
graphical design of DMX queries. You can, however, write your own DMX. You do so
by connecting to an SSAS source and entering the DMX into the MDX Statement
area of the Specify a MDX Query dialog, in the Table Import Wizard. Another way
is to embed your DMX query within a SQL query and import the data returned from
the outer SQL query. To do that, you connect to a SQL Server source and enter the
SQL/DMX into the SQL Statement area of the Specify a SQL Query dialog of the
Table Import Wizard. Alternatively, you can query some data mining data from Excel
itself—for this you will need to download the data mining add-in for Excel (the data
mining results are shown in an Excel worksheet when you use the Table Tools/Analyze
ribbon, rather than the Data Mining ribbon), and you can then import or link into the
PowerPivot window from the Excel worksheet. Stand-alone DMX, or DMX embedded
in SQL, works for DMX Cases, Content, Prediction and other queries. This appendix
includes sample code for a few Cases, Content, and Prediction queries.

PowerPivot

Part I

This page intentionally left blank

PowerPivot: Quick Start

Chapter 1

4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is a short “quick start” chapter. It shows just how easy it is to create business
intelligence (BI) with PowerPivot for Excel. Essentially a practical chapter, it
does not contain much by way of theory or concepts—these are introduced

gradually throughout the rest of the book. The chapter shows how to build quite a
sophisticated pivot table in just a few minutes.

Key concepts Quick introduction to PowerPivot, quick introduction to Data
Analysis eXpressions (DAX), importing data, creating calculated columns and
measures, creating a PowerPivot pivot table in Excel

This is real business intelligence—it’s a PowerPivot pivot table in an Excel 2010
worksheet, as shown in Figure 1-1—and, with a little practice, you can build this pivot
table in less than five minutes!

Let’s try building this business intelligence right now, and learn a little about
PowerPivot for Excel and Data Analysis eXpressions (DAX) formulas.

The example here uses data from the SQL Server Northwind sample database. Of
course, you may not have SQL Server—and if you do, you may not have the Northwind
database! Fortunately, there are lots of alternatives and solutions to this.

If you don’t have SQL Server, you can download an Evaluation Edition from
www.microsoft.com.

If you have SQL Server, but not the Northwind sample database, instructions on
how to download Northwind are in the introduction.

What if you don’t want to (or can’t) download and install an evaluation copy of
SQL Server? That’s fine—you can always use the pre-Access 2007 version of
Northwind (Northwind.mdb). Again, if you don’t have this, download instructions
are in the introduction. As another alternative, this book’s Web site has an Excel
version of Northwind if you want to work with that. As of this writing, there is
also a data feed version of Northwind, freely available on the Internet.

This “quick start” chapter uses the SQL Server version of Northwind. If you don’t
have this, alternatives are presented in the next chapter—even so, hopefully, the
examples in this chapter will make perfect sense without having to click along. In
Chapter 2, all of the steps are explained in more detail. In addition, that chapter has
detailed instructions on how to use the Access version, the Excel version, and a data
feed version of Northwind. In the meantime, you may be able to adapt this chapter
to work with the Access version of Northwind. If so, please use the pre-Access 2007
Northwind (Northwind.mdb), so the data and structures match those here. The Excel
and data feed versions of Northwind require a couple of extra steps (specifically, setting
up relationships between tables)—these extra steps are fully documented in Chapter 2.

C h a p t e r 1 : P o w e r P i v o t : Q u i c k S t a r t 5

To create your business intelligence:

1. Start Excel 2010.

2. Click the PowerPivot tab to see the PowerPivot ribbon (see Figure 1-2). If there’s
no PowerPivot tab to click, it means that PowerPivot for Excel is not installed.
PowerPivot for Excel is available as a free download (if you don’t have it yet, go
to www.powerpivot.com or www.microsoft.com and search for PowerPivot for
Excel to find the download page—there’s also PowerPivot for SharePoint, which

Figure 1-1 Instant business intelligence

6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

is beyond the scope of this book—it’s PowerPivot for Excel that you need to
work through this book). Make sure that you choose the relevant version for your
computer; there are 32-bit and 64-bit versions.

3. Click the PowerPivot Window button in the Launch group of the ribbon. A new
PowerPivot window opens with its own ribbons. You now have two windows—
the original Excel workbook and the new PowerPivot window (Figure 1-3), which
is linked to the original Excel workbook.

Figure 1-2 PowerPivot ribbon in Excel

Figure 1-3 PowerPivot window

C h a p t e r 1 : P o w e r P i v o t : Q u i c k S t a r t 7

4. On the Home ribbon in the PowerPivot window, click From Database in the Get
External Data group. Now you have a choice of source data from the drop-down
menu (see Figure 1-4). The next step is for connecting to SQL Server Northwind.
If you don’t have SQL Server Northwind, try to connect to Access Northwind
(northwind.mdb) instead—it’s an almost identical process.

5. Click From SQL Server (if you have the SQL Server Northwind). This opens the
Table Import Wizard. You’ll need to enter a server name (or choose your SQL
Server from the drop-down) and then select Northwind as the database (as shown
in Figure 1-5), before clicking Next.

Figure 1-4 Choosing a data source

Figure 1-5 Specifying server and database names for SQL Server

8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

6. On the next screen, keep the default, which is to import tables and/or views,
and click Next again (Figure 1-6). Select the Categories, Customers, Employees,
Order Details, Orders, and Products tables in the next dialog (Figure 1-7). Click
Finish and finally Close, after PowerPivot has imported all the tables.

Your PowerPivot window should now have six tabs, one for each table (Figure 1-8).
The table names are reflected in the names of the tabs. You can change the table
names by right-clicking or double-clicking the tabs. Each table includes all of the
columns and rows from the source data by default—although the Picture column
from the Categories table has been automatically excluded because it’s a binary large
object, known as a BLOB, in both the SQL Server and Access source databases.
There is virtually no limit on the number of rows in a table; especially on 64-bit
computers, you can have millions of rows in a table (computer memory permitting
and subject to a 4GB memory limit on workbook size).

Figure 1-6 Import method

C h a p t e r 1 : P o w e r P i v o t : Q u i c k S t a r t 9

7. Click the Orders tab and find the first empty column with a column header of
Add Column—you may have to scroll in order to see it. Click anywhere inside the
column to activate the formula bar.

8. Now, for your first DAX! Type the following syntax (you can use AutoComplete
to save typing and to eliminate syntax errors and typos):

=YEAR(Orders[OrderDate])

Because the column is in the same table, you can omit the table name. Then
press enter to commit the formula and calculate the values. Don’t worry about
the syntax just yet; there are plenty of explanations of DAX syntax in the rest
of this book. But take a look at the column, which now has a new column
header of CalculatedColumn1—it contains the year that each order was made.

Figure 1-7 What to import

1 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Double-click the column header and type Year, and then press enter to rename
the column (the result is shown in Figure 1-9). As Northwind has been around for a
while, and the years have changed, your values for the Year column may be different.

9. Now click the Order Details tab to see that table. Again click in the Add Column
column and enter the following DAX formula:

='Order Details'[Quantity] * 'Order Details'[UnitPrice]

Again, you can leave out the table name, as all of the columns are in the same
table. This is a formula that simply multiplies the quantity sold by the price to
give the value of sales for each product that appears in an order line. First press
enter to initiate the calculation, and then double-click the column header,
rename the column to Sales Amount, and press enter again. The result is shown
in Figure 1-10.

Figure 1-8 PowerPivot window with imported tables

C h a p t e r 1 : P o w e r P i v o t : Q u i c k S t a r t 1 1

10. Now add a calculated column to the Products table to show the category for each
product. The DAX syntax is

=RELATED(Categories[CategoryName])

Here, the table name is obligatory, as the referenced column is in another table.
Rename the column to Category. The DAX has been used to create a calculated
column. This is one of two situations in which you write a DAX formula—the

Figure 1-9 DAX calculated column for year values

Figure 1-10 DAX calculated column showing sales

1 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

other situation (creating a measure) will be described shortly when you have a
pivot table. You have pulled the category name from the Categories table into
the Products table (see Figure 1-11). You have started to denormalize your data
and to build a star schema—PowerPivot for Excel uses a hidden instance of SQL
Server Analysis Services (SSAS) behind the scenes to automatically create a cube
for you (but you don’t have to understand anything about star schemas or cubes—
that’s the beauty of PowerPivot for Excel). SSAS runs in the same process as Excel.

11. On the Home ribbon (of the PowerPivot window), click PivotTable in the
Reports group and select PivotTable from the drop-down menu (Figure 1-12).
In the ensuing Create PivotTable dialog, select Existing Worksheet and click OK
(Figure 1-13). You should be back in the Excel workbook, looking at an empty
pivot table and a PowerPivot Field List at the right (Figure 1-14). If you can’t see
the Field List, click inside the pivot table. If it’s still not visible, click Field List
in the Show/Hide group of the PowerPivot ribbon. You now have two windows
open, Excel and PowerPivot. To move between them, you can use the task bar.
If you close the PowerPivot window, simply click the PowerPivot Window button

Figure 1-11 DAX used to denormalize data

Figure 1-12 Creating a pivot table

C h a p t e r 1 : P o w e r P i v o t : Q u i c k S t a r t 1 3

on the PowerPivot ribbon in Excel (this also switches to the PowerPivot window,
if it’s already open). When you inserted the pivot table, you were switched
automatically back into Excel. You can move manually from the PowerPivot
window to the Excel window at any time—click the Switch to Workbook icon on
the Quick Access toolbar in PowerPivot.

Figure 1-13 Location of new pivot table in Excel

Figure 1-14 PowerPivot Field List in Excel

1 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you expand the Orders and the Order Details tables in the PowerPivot Field
List, you can see the two new columns you added using DAX: Year and Sales
Amount. Under the Products table, you can also see your new Category column.
It looks no different from the original imported columns. You are ready to build
your first PowerPivot pivot table (hosted in Excel) by adding columns.

12. Right-click Category under the Products table (not CategoryName under
Categories) and choose Add to Column Labels. You can also drag and drop to the
Column Labels drop-zone. Do the same for ProductName. Under the Customers
table, right-click Country and choose Add to Row Labels (yes, columns can
become rows!). Do the same for City. Under the Order Details table, right-click
Sales Amount and choose Add to Values. Next, under the Orders table, right-
click Year and choose Add to Slicers Horizontal. Repeat this for the Category
column in the Products table. There should be seven entries in the bottom half of
the PowerPivot Field List—by default, the lower section of the PowerPivot Field
List contains drop-zones for different areas of the pivot table. Category appears
twice, and Sales Amount (in the Values section) is named Sum of Sales Amount.
Your PowerPivot Field List should look something like Figure 1-15.

13. Now is probably a good point at which to save your work. You save from Excel as
you normally do, although you can also save from the PowerPivot window. Both
the Excel workbook and the PowerPivot model, including both metadata and
data, are saved as one single .xlsx file. You have just created a multidimensional
cube without having to know anything about star schemas or cubes or dimensions
or facts/measures or SSAS. If you copy the .xlsx file and rename with a zip
extension, you can unzip the file. It contains quite a lot! In the customData
subfolder of the xl folder, there’s a file called item1.data, which is fairly big. This
file is your PowerPivot data.

14. In the pivot table, right-click on Argentina under Row Labels and choose
Expand/Collapse, followed by Collapse Entire Field. Repeat this process for
Beverages under Column Labels. Your pivot table should resemble Figure 1-16.
That’s pretty good for a few minutes’ work, isn’t it? You might want to experiment
with expanding and collapsing the countries and the categories. Something you
may not have seen before are the two slicers at the top. Try clicking individual
years or product categories to implement filters and watch the data change (it’s
really fast). To select more than one filter in a particular slicer, click the first tile
and hold down the ctrl key as you click others—the data will not refresh until
you release the ctrl key. Or you can hold down the mouse button to select
contiguous slicer tiles. To show all of the data and clear any slicer filters, click the
small filter funnel (which has a red cross when a filter is in operation) at the top
right of a slicer.

C h a p t e r 1 : P o w e r P i v o t : Q u i c k S t a r t 1 5

This is a really cool pivot table. But we can make it even better. For example, there are
some blank cells, which you might wish to change to zeros—our Norwegian customers
are not keen on Grains/Cereals. Maybe the Sales Amount could be formatted a little
better. And it might be nice to show market shares by country/city and category/product,
as a percentage of the overall total sales (1354458.59 in the bottom-right corner). All of
this, and much more, can be accomplished with your mouse from the GUI— Chapter
5 goes into detail about pivot table possibilities. For example, you can exploit the power
of Excel’s conditional formatting capabilities. However, we are going to add some new
data to show percentage market share using DAX. When you work with cells in the

Figure 1-15 PowerPivot Field List with entries

1 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Values area, you are working with measures (sometimes referred to as facts). Measures are
usually numeric values that are used to show totals and subtotals—more on this later.

Earlier, you used DAX to add columns to tables—these are DAX calculated columns.
The second situation when we use DAX is to create measures. DAX formulas are either
calculated columns or measures. As you progress through the book, the difference
between calculated columns and measures should become clear. If you have star schema
experience, you can think of them as dimensions and facts. If you have cube experience,
you might know them as dimensions and measures. However, to use PowerPivot and
DAX, you don’t need any knowledge of either star schemas or cubes. The whole point
of PowerPivot for Excel is to shield you from such technicalities.

To create your first DAX measure:

1. Click New Measure in the Measures group of the PowerPivot ribbon in the Excel
workbook. This opens the Measure Settings dialog box (Figure 1-17). If New
Measure is disabled, click inside the pivot table. An alternative is to right-click on
the table in the Field List and choose Add New Measure.

Figure 1-16 PowerPivot pivot table in Excel

C h a p t e r 1 : P o w e r P i v o t : Q u i c k S t a r t 1 7

2. Enter Share as the name for the new measure for Measure Name (All Pivot
Tables) and make sure that Order Details is selected in the Table name drop-
down. Then, enter the following DAX in the Formula box (if you need a bit more
room to type, expand the size of the dialog box and the Formula box will enlarge).
When you finish the entry, click Check Formula to verify your syntax.

=SUM('Order Details'[Sales Amount])/
CALCULATE(SUM('Order Details'[Sales Amount]),
ALL('Order Details'))

There’s quite a bit going on here. Click OK to accept the DAX formula and it
should be added to the Values section. The new calculated measure, Share, also
appears under Order Details and has a calculator icon next to it. If it’s not in the
Values section, right-click the measure and choose Add to Values.

3. As a final, cosmetic step, let’s align our new Share measure and show it as a
percentage. Click on one of the values for Share in the main body of the pivot
table. Click PivotTable Tools, then click the Options tab to open its ribbon.

4. Check that the Active Field in the Active Field group is Share and click Field
Settings. This opens the Value Field Settings dialog. In this dialog, click the
Number Format button to open the Format Cells dialog. Select Percentage and
click OK twice. A quicker alternative is to right-click on one of the values in the
pivot table and choose Number Format. Well done, you have a really nice BI pivot
table—hopefully, it looks similar to Figure 1-18.

This was a short, quick chapter—but it covered a lot of ground. Despite the chapter’s
brevity, you’ve seen many of the important features and the versatility of PowerPivot for
Excel. If you tried the example, you have imported data into PowerPivot and created
some DAX calculated columns (and a DAX measure) to extend the data. In addition,

Figure 1-17 Measure Settings dialog

1 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

you placed much of the data into a PowerPivot pivot table in Excel and saw just how
easy it is to build business intelligence. Please don’t be fooled by the small tables in
these examples—PowerPivot can handle millions of records in tables. This business
intelligence may be self-service and takes only a few minutes, but it’s truly industrial
strength. The next chapter consolidates what you’ve learned—it has more detailed
instructions. It also extends this chapter and shows how to import data from Access
and Excel and data feeds, as well as SQL Server again. The next chapter also shows
how to create relationships between PowerPivot tables, if they are not inherited from
your source data, which is always the case with Excel and data feed imports.

Figure 1-18 A completed business intelligence PowerPivot pivot table

PowerPivot: Overview

Chapter 2

2 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Chapter 1 was a very quick introduction to PowerPivot for Excel. It concentrated
on importing data from SQL Server. This chapter takes a more detailed look
at importing data from SQL Server. It also shows how to import data from

Access, Excel, and data feeds. You are shown relationships between PowerPivot tables
and how to set them up, if they are missing. Data Analysis eXpressions (DAX) is used
to create both calculated columns in PowerPivot tables and measures in PowerPivot
pivot tables in Excel. In addition, a measure is added through the GUI, without the need
for DAX. You get to construct a sophisticated pivot table and a pivot chart linked to the
pivot table. Various ways of filtering data in a pivot report (pivot table or pivot chart)
are introduced.

This chapter consolidates and extends the example in the previous chapter. It should
give you a good overview of some of the main features and capabilities of PowerPivot.
Subsequent chapters build upon this chapter—in particular, the next chapter is a full
in-depth look at PowerPivot.

Key concepts Starting PowerPivot; importing data into PowerPivot from SQL
Server, Access, Excel, and data feeds; setting up relationships; DAX calculated
columns; DAX measures; pivot tables; pivot charts; filters; slicers

Starting PowerPivot
When you start Excel 2010, you are probably looking at the Excel Home ribbon as
shown in Figure 2-1.

If the Home ribbon is hidden, as in Figure 2-2, double-click the Excel Home
(or any) tab to re-enable ribbon display. If you single-click rather than double-click,
the ribbons are going to obscure the top part of your worksheet. If that happens,
try a double-click.

To display the PowerPivot ribbon, click the PowerPivot tab. The result is shown
in Figure 2-3. Maybe we should call this the Excel PowerPivot ribbon, as you’re still
in an Excel workbook. PowerPivot itself has its own separate window and ribbons, as
you’ll see in a minute. The PowerPivot ribbon has a number of groups. Presently, the
Measures, Report, and Show/Hide groups are disabled—these will become enabled
once you have added your first pivot table or created your first PowerPivot table.

When you create a pivot table from PowerPivot data, the pivot table is hosted within
an Excel worksheet. It is slightly different from a normal Excel pivot table, so it really
can be called a PowerPivot pivot table, although both can be seen in an Excel worksheet.
A PowerPivot pivot table (and/or a pivot chart) is where you visualize your Business
Intelligence (BI)—it’s your interface to your data. Perhaps I shouldn’t call it data any
more. Rather, it’s going to be information (meaningful data), or better still, intelligence.

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 2 1

Intelligence or business intelligence has many definitions. It’s information that is easily
found, easily visualized, and easily actionable. That means it’s going to form the basis for
sound and timely decision making. It gives you that competitive edge, and PowerPivot
makes it so easy!

If you don’t see a PowerPivot tab, and therefore you don’t have the PowerPivot ribbon, it
means you haven’t got PowerPivot! PowerPivot is not included with a default installation
of Excel 2010. Don’t worry; you can easily download PowerPivot for Excel for free. You
can find the download on the main PowerPivot Web site at www.PowerPivot.com, and it’s
also available from www.microsoft.com. Once you download and install, you should be
back with us with your PowerPivot ribbon open, as shown in Figure 2-3.

On the PowerPivot ribbon, in Excel, click the PowerPivot Window button—the
only one in the Launch group. This opens PowerPivot; see Figure 2-4. Veteran Excel
users may find this a little unusual. You now have two windows—the original Excel
workbook and the new PowerPivot window. Although they appear in two separate

Figure 2-1 Excel with ribbons

2 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

windows, they are intimately related. When you save your Excel workbook in the
normal way, the PowerPivot window and its contents are saved as part of the Excel
workbook. Any data and settings inside the PowerPivot window are saved with
the Excel workbook. If you use the Save button in the Quick Access toolbar in the
PowerPivot window, it saves the outer Excel workbook and the PowerPivot window
within it. The PowerPivot window is not a separate workbook file that you can open
separately. If you have closed both windows, and you want to return to your PowerPivot
window, you open the Excel workbook first and click the PowerPivot Window button
on the Excel PowerPivot ribbon.

It’s easy to switch between the two windows. From the PowerPivot window, you
click the Switch to Workbook button in the Quick Access toolbar at the top. From
Excel, click the PowerPivot Window button in the Launch group of the PowerPivot
ribbon—this puts you back in the PowerPivot window. If this is the first time you’ve
clicked, it opens an empty PowerPivot window. If you had closed the PowerPivot

Figure 2-2 Excel without ribbons

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 2 3

Figure 2-3 PowerPivot ribbon in Excel

Figure 2-4 PowerPivot window

2 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

window, this reopens it. In addition, you could also try normal Windows methods for
switching windows. For example, you can click either window on the task bar or press
alt-tab—but be careful; you can have multiple Excel and PowerPivot windows open at
the same time, so make sure you select the right one.

Once you’re in PowerPivot, there are two tabs labeled Home and Design leading to
two ribbons. If you’ve not done any work yet in your PowerPivot window, many of the
buttons in the two ribbons are disabled (and later you may see a third Linked Table
ribbon). The formula bar is also disabled and there are no tabs in the window. You’ll see
the first tabs shortly.

The PowerPivot window (from now on, I’ll often simply call it PowerPivot) is
where you assemble the data you wish to analyze. It’s where you start turning data into
intelligence. Mostly, you’ll assemble the data by importing it from another source or
from multiple sources, although you can also copy and paste or link to data. The beauty
of PowerPivot is that you can create real business intelligence and display it in a pivot
table back in Excel, even if your source data is far from perfect. The next few sections
show how to assemble your data within PowerPivot.

There are three different ways to get data into PowerPivot. One, you can import
data from one or more external sources. You do this from the Get External Data
group in the Home ribbon of PowerPivot. Two, from the Clipboard group on the same
ribbon you can paste in data (possibly from an existing Excel list or table) that you’ve
previously copied to your Clipboard. Three, you can link back to an Excel table (a
range or list gets automatically converted into an Excel table) through the Excel Data
group on the PowerPivot ribbon in Excel. The first two methods are available from the
PowerPivot window, and the third method is accessed from the Excel window.

It’s possible to use any of these methods, or to use more than one. It’s also possible
to employ any method more than once, perhaps bringing in data from multiple
disparate sources. In effect, you can consolidate data from heterogeneous sources
into one place, a PowerPivot window. With a few mouse clicks you can have your
very own data mart within minutes—a central repository for all of the relevant
data without any complex Extract, Transform, and Load (ETL) operations. Before
PowerPivot came along, assembling a data mart was quite often a daunting task.
Now you can have data from text files, Access databases, Excel spreadsheets, data
feeds, SQL Server Reporting Services (SSRS) reports, and high-end relational
database management systems such as SQL Server or Oracle or DB2, all joined
together. You can even add to this data from a multidimensional cube hosted in SQL
Server Analysis Services (SSAS)—so you can have multidimensional and relational
data working together, which is quite tricky to do without PowerPivot. And there’s
more! How about adding data from another established PowerPivot for SharePoint

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 2 5

workbook, or from your big SQL Server in the sky, SQL Azure? You can even paste
from a Word table.

Let’s work through the steps involved in assembling some or all of this data. You
won’t necessarily have all of the data sources mentioned. In that case, try the ones that
are relevant to you. But in order to follow the steps in this book on your computer,
rather than just read about them, it would be helpful if you have the Northwind
database in either its SQL Server or Access or Excel incarnation. Details of how to
download Northwind for Access or SQL Server are given in the introduction. There
is also, as of this writing, a Northwind data feed that you might use instead. I have
also created an Excel version—again, download details are mentioned earlier. Should
you not have any of these versions of Northwind, it should be relatively easy to adapt
the instructions that follow to your own data sources. Please note that, because of
structure and data changes, you’ll need the pre-Access 2007 copy of Northwind to
follow the examples here (that is, Northwind.mdb, not Northwind.accdb). You can
load Northwind.mdb into Access 2010 or Access 2007 and convert it to Northwind.
accdb—that will also work fine. Just be careful that you don’t save and overwrite any
original Northwind.accdb that you may have.

The data in the Access and SQL Server and Excel and data feed Northwinds is
identical (at least for the tables and columns we’ll be working with), so once you’ve
done the import, the steps in this book should work for everyone. In essence, this means
that you don’t have to have SQL Server—even if the full official name of PowerPivot for
Excel is Microsoft SQL Server PowerPivot for Excel 2010. You do need SQL Server
(in order to have SSAS, or SQL Server Analysis Services) if you wish to view your
PowerPivot pivot reports in SharePoint, using a Web browser, rather than in Excel. You
will also need to enable Excel Services in SharePoint. This book is about PowerPivot
for Excel (where you create everything in the first place) rather than PowerPivot for
SharePoint, where you can deploy the results and make them available through your
SharePoint Web site if you wish. So all you need is Excel 2010, with PowerPivot for
Excel 2010 installed, and preferably one of the four possible Northwinds.

The next four sections demonstrate how to import Northwind data from SQL
Server and Access and Excel and a data feed in turn. You only need to do one of these,
whichever is appropriate to your situation, although for future reference it might be
beneficial to read the other three. If you wish to try more than one, and you have the
relevant Northwinds, please remove the tables from PowerPivot first. Otherwise, you
will end up with tables being duplicated. To delete a table, you right-click its tab and
choose Delete. You need to be in the PowerPivot window, not the Excel one (unless you
are first linking to an Excel table), to import or delete data. Here goes.

2 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Importing from SQL Server
If you’re wondering why we’re going to use Northwind rather than Adventure Works
(the classic sample databases for SQL Server 2005 and 2008) or the newer Contoso
sample database, it’s so that readers who don’t have SQL Server can use an Access,
Excel, or Northwind data feed, and everyone can follow along with the same practicals.
An Access version of Adventure Works is not readily available for download, and an
Excel. version would be pretty big. Northwind contains everything we need to learn
about every aspect of PowerPivot for Excel and its associated DAX language.

If you don’t have SQL Server and the Northwind database, then maybe try the next
section, “Importing from Access,” or the subsequent sections on importing from Excel
or a data feed. For future reference, I recommend that you read this section on SQL
Server anyway, even if you are not in a position to try it just yet. To import some tables
from SQL Server Northwind:

1. Click the From Database button in the Get External Data group of the Home
ribbon in PowerPivot. This opens the menu shown in Figure 2-5.

2. In this menu choose From SQL Server to open the Table Import Wizard. You
first need a Server name and a Database name. Enter the name of your SQL
Server in the Server Name field, and choose Northwind from the Database
Name drop-down. In Figure 2-6, you can see I’ve been lazy and used the dot
shorthand for localhost (in a production environment, it’s good practice to enter
the server name explicitly). It’s a good idea to click the Test Connection button
before you click Next. If the connection fails, you may have to switch from Use
Windows Authentication to Use SQL Server Authentication and enter your SQL
Server login and password (optionally, saving your password; this is particularly
important if you later deploy to PowerPivot for SharePoint). If the connection is
taking too long, for example, if a server is unavailable, you can cancel the operation

Figure 2-5 Choosing an external data source

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 2 7

at any time. Note the Friendly Connection Name; this is the name by which the
connection will be known in PowerPivot. By default, it includes your server and
database names—you can change these if you wish.

3. The next dialog is where you choose how to import your data. The default is
to select tables and/or views as your data sources. If you wish to manipulate the
data in any way, you can write your own SQL queries. If you’re an old hand at
relational databases, you may be tempted to denormalize tables by writing inner
joins. With PowerPivot, this is not necessary as some very simple DAX (easier
than the SQL!) will do this for you. Accept the default to choose from a list of
tables and views, as shown in Figure 2-7, and click Next.

Figure 2-6 Entering a server name and choosing a database name

2 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

4. You are now at the Select Tables and Views stage of the Table Import Wizard,
as shown in Figure 2-8. There’s quite a lot going on here. Before we discuss
that, select the check boxes for the Categories, Customers, Employees, Order
Details, Orders, and Products tables. The very top check box allows you to select
or deselect all tables and views en masse. You can sort the tables by clicking the
column header. You can also see the Schema name for your tables and views and
a Friendly Name. If you wish, you can alter the Friendly Name—this is the name
that will appear in PowerPivot and any pivot tables or pivot charts that you create
back in Excel. However, it’s possible to change the name later, in the PowerPivot

Figure 2-7 How to import

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 2 9

window by renaming tables. The Select Related Tables button will find all tables
directly related to a currently selected table. This is very handy when your source
database has referential integrity between tables and is complex, or if you’re not
sure about how the tables relate together—maybe there’s a lookup table that
contains essential data that you’re not aware of.

5. If you click the Preview & Filter button, it opens the Preview Selected Table
dialog of the Table Import Wizard (see Figure 2-9), on the currently selected
table. This is so you can check that your data is arranged as you want it. Here,
you can remove columns from the table by unselecting check boxes for the
columns. In addition, you can set up filters and sorting. A f ilter is the equivalent

Figure 2-8 What to import

3 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

of a SQL Where clause, and a sort is the equivalent of a SQL Order By clause.
Filtering and sorting are covered in the next chapter, so for now, cancel out of
the dialog box if you opened it. Please note that if multiple tables are selected,
the Preview & Filter button is disabled. To complete the import of tables,
click Finish.

6. The Importing dialog box (see Figure 2-10) informs you that all six tables have
been successfully imported. All you have to do now is to click Close and you are
returned to the PowerPivot window, which now looks a little different. It contains
a tab for each of the six tables. Before examining the PowerPivot window and its
tables, let’s see how to import the same data from Access, and Excel, and data feed
sources—Access first.

Figure 2-9 Previewing data

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 3 1

Importing from Access
If you don’t have the Access Northwind.mdb database (or Northwind.mdb saved as
Nortwind.accdb) and you weren’t able to complete the previous SQL Server import, try
the next section, “Importing from Excel,” instead. However, I strongly recommend that
you read this short section anyway—it may prove useful in the future.

To import some tables from Access Northwind:

1. In PowerPivot, click From Database in the Get External Data group of the Home
ribbon. Select From Access in the resulting menu (see Figure 2-5 in the earlier
section on importing from SQL Server).

Figure 2-10 A successful import

3 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

2. The dialog box that opens is different from that for SQL Server. Instead of
specifying a server and a database, you browse to find the Access database file
(see Figure 2-11). When you click the Browse button, by default it’s only going
to find Access .accdb databases. In order to locate Access .mdb databases, change
the drop-down entry in the Open dialog to Microsoft Office Access 97-2003
Database (*.mdb). Once you’ve found your Northwind.mdb, click Open. You may
want to click Test Connection before choosing Next.

3. The subsequent dialog is where you decide whether to select tables and/or views
from a list or to write your own SQL queries to extract the data. This dialog is
identical to the one seen during a SQL Server import, as shown in Figure 2-7
earlier. For now, accept the default and click Next.

Figure 2-11 Connecting to an Access database

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 3 3

4. The Table Import Wizard is now at the Select Tables and Views dialog as in
Figure 2-12. This is subtly different from the SQL Server equivalent. This time
there is no column for Schema—Access databases do not support schemas. Turn
on the check boxes for six tables: Categories, Customers, Employees, Order
Details, Orders, and Products. Then click Finish.

5. The last dialog in the Table Import Wizard is called Importing. You saw this
earlier for a SQL Server import in Figure 2-10. Click Close in this dialog. You are
returned to the PowerPivot window, which now has six tabs, one for each table.
Just before we examine the PowerPivot window, here’s a quick look at importing
the same data from Excel itself.

Figure 2-12 What to import

3 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Importing from Excel
In order to follow this section as a practical, you’ll need the Northwind Excel workbook,
which you can download from this book’s Web site. To import data from Excel:

1. In the PowerPivot window, click From Other Sources in the Get External Data
group on the Home ribbon. This opens the dialog seen in Figure 2-13. From this
menu, choose Excel File (towards the bottom of the list) and click Next.

2. You should be in the Connect to a Microsoft Excel File stage of the Table Import
Wizard, as shown in Figure 2-14. Click Browse to find your Excel spreadsheet,
and then click Open. If you want to follow the examples here exactly, locate the
Excel version of Northwind that you may have downloaded. Please note the check

Figure 2-13 Choosing the type of data to import

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 3 5

box indicating that the first row in a worksheet contains column headers—turn
this on, as the sample you may have downloaded does include the column names.
Click Test Connection to verify it’s a valid Excel workbook, and click Next to
move on.

3. You are at the Select Tables and Views stage. Unlike with SQL Server and Access,
you have not been given the option of writing SQL, instead of simply choosing
tables. The Select Tables and Views dialog is sufficiently different from the SQL
Server and Access equivalents to justify another screen shot; see Figure 2-15. I
have taken a few steps to simplify mine. When you do this against your own Excel
sources, it may appear a little more complex. You can import from Excel lists and/
or tables (there is no such thing as a view in Excel). Excel lists were confusingly
called tables before Excel 2007. By list, I mean a contiguous range of data on a
single worksheet. A table (in Excel 2007 and Excel 2010) is a list that has been

Figure 2-14 Connecting to an Excel data source

3 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

explicitly turned into a table—one way to do that is by clicking the Format as Table
button in the Styles group of the Home ribbon. Excel tables allow you to filter and
sort data easily, and you possibly have a lot of experience with Excel tables already.
Incidentally, your PowerPivot tables (very soon, I promise!) are similar to Excel
tables. The Source Table column displays the Excel worksheet tab name followed
by a dollar symbol ($), for example, Categories$—you are importing a list contained
within a worksheet called Categories. If the Friendly Name column is followed by
a space and a number, you probably already have those tables in PowerPivot—that’s
very likely if you did the SQL Server or Access steps earlier in the same PowerPivot
window. You’ll notice the single quotes around the Source Table name for Order
Details, but this is not reflected in the Friendly Name and they are not strictly
necessary. Also, the Select Related Tables button is not much help this time. This
is perfectly sensible as Excel (unlike SQL Server and Access earlier) does not have

Figure 2-15 Choosing Excel lists or tables to import

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 3 7

the concept of related tables. But thanks to PowerPivot, we are going to create
relationships on non-relational Excel lists/tables in a while!

4. Select all six tables (Categories, Customers, Employees, Order Details, Orders,
and Products). Click Finish.

5. The last dialog in the wizard is called Importing. It’s virtually the same as the one
at the end of an Access or SQL Server import (Figure 2-10), except the final row,
Data Preparation, is missing. Data Preparation is where relationships are detected
and created—this does not apply to Excel imports. Click Close.

Importing from a Data Feed
You can also import from a data feed on the Internet. As of this writing, there is a data
feed for the Northwind database. URLs come and go. I hope, but don’t promise, that
this URL is still working when you read this book. Here are the steps to import from
a Northwind data feed:

1. Click From Data Feeds in the Get External Data group on the PowerPivot Home
ribbon.

2. Enter http://services.odata.org/Northwind/Northwind.svc/ as the Data Feed
URL. Click Test Connection, and if successful, click Next.

3. Choose six tables: Categories, Customers, Employees, Order_Details (note the
underscore), Orders, and Products. Then click Finish, followed by Close.

The data imported (assuming the URL is still valid) is the same as the SQL Server
or the Access or the Excel data—there are minor differences, but they do not affect any
of the examples in this book.

PowerPivot Window
Once a data import has finished, you are returned to the main PowerPivot window.
Now it will include six PowerPivot tables, each with its own tab. In the previous
sections you might have imported six tables from SQL Server, Access, Excel, or a data
feed. Your window should look like that shown in Figure 2-16—there may be some
minor differences in your tables (that is, column names, number of columns, and icons
in some column headers), depending upon the source of your data.

You are not restricted only to SQL Server, Access, Excel, or data feed imports.
There are many different sources you can use. All are covered in this book, some in
great detail, for example, SQL Server Analysis Services (SSAS). This is a salient point
at which to mention that you can combine table imports from more than one source.

3 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

In our example, you could just as easily have imported a couple of the tables from Excel,
a couple from Access, and a couple from SQL Server. PowerPivot is an excellent way
to consolidate multiple data sources into one, before you view the resulting business
intelligence in a pivot table. It also allows you to define relationships between tables
from differing sources. In effect, it helps you to design and build a data mart with a
minimum amount of effort. In addition, it can handle very large data sets. You are not
limited to the current Excel maximum of just over one million rows per worksheet. The
limit now depends on available memory. On a 32-bit system, that means it can handle
millions of rows or more in each table. On 64-bit systems, you can have even more rows.
You are, however, limited by a maximum workbook size of 2GB.

Before moving on to those topics in more detail, let’s see how PowerPivot handled
the table imports. You will find a few differences, depending on whether you imported
from SQL Server/Access or from Excel/data feed. The color scheme you see for your
PowerPivot tables is determined by your settings in Excel for Table Style Medium 11.
You can check this style by clicking the Format as Table button in the Styles group of
the Home ribbon from the Table Styles group of the Table Tools/Design ribbon. First,
we’ll look at the Categories table (Figure 2-17).

In your version of the Categories table, you may see a small icon in the column header
for the CategoryID column. The icon includes two small tables. CategoryID is a
column that can be referenced by other tables. If you are from a relational database
background, CategoryID is a primary key and PowerPivot recognized it as such during
the import from SQL Server and Access. If you are looking at your own Excel or data

Figure 2-16 PowerPivot tables

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 3 9

feed import, you won’t see the symbol—Excel lists and tables do not have a concept
of a primary key. Shortly, we’ll discuss how to make it a primary key for the Excel/data
feed import.

To qualify as a primary key in a PowerPivot table, a column must contain only
unique values and no blanks. If you compare the PowerPivot version to the original
in SQL Server or Access, notice that the Picture column has been automatically
eliminated. In Access it has a data type of OLE Object, and in SQL Server it’s an
image data type. These are binary large objects, known as BLOBs (in this case a
graphic), and are not supported in PowerPivot. The Excel/data feed sources did not
contain this column in the first place. All versions include the Description column. This
is from a character large object (CLOB)—it’s a Memo data type in Access and ntext in
SQL Server. CLOBs are supported in PowerPivot. Now take a look at the CategoryID
column once more. Click anywhere inside the column to highlight it. Make sure you are
on the PowerPivot Home ribbon.

In the Data Type drop-down in the Formatting group, notice the data type for the
column. For SQL Server and Access versions of the import, it’s Whole Number. For
the Excel version, it’s Decimal Number—Excel does not have explicit data types, so
PowerPivot has made a guess. In fact, the CategoryID should always be an integer—so
change it to Number (Whole), if necessary, and accept Yes in the warning dialog. You
shouldn’t lose any data in this case.

Figure 2-18 shows the Customers table. The SQL Server version may have three
extra columns: ModifiedWho, ModifiedWhen, and ModifiedHow. These are not
needed further, and to make all four imports similar, you may want to remove these
columns. To do so, right-click the column and choose Delete Columns, then accept
Yes in the warning dialog—it doesn’t matter which of the PowerPivot ribbons is current.
You can select and delete multiple columns at the same time, if you need to.

Figure 2-17 Categories table in PowerPivot

4 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

In Figure 2-19, you can see the Employees table. The SQL Server import version
may have a PhotoPath column, which you can delete to bring it into line with the other
versions.

The next figure, Figure 2-20, shows the Order Details table. The Excel/data feed
import has no primary key icon in a column header—we are going to fix this soon.
The Access and SQL Server versions have no primary key, but two distinct foreign
keys on OrderID and ProductID, pointing to the Orders and Products reference
tables, respectively. You should see a small magnifying glass in the headers for those
two columns, which indicates a foreign key. You can navigate to the related table by
right-clicking. This release of PowerPivot does not support composite primary keys—
if you want a composite primary key, you can use DAX to combine multiple columns
into a single column. The data type for the UnitPrice column in the Excel import is

Figure 2-18 Customers table

Figure 2-19 Employees table

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 4 1

Decimal Number. If you are working on an Excel copy, change it to Currency. To do
so, click in the column, click the Home tab to view the Home ribbon, and use the
Data Type drop-down.

The next table (the tabs are in the order in which they were imported) is the Orders
table (Figure 2-21). Note that you can change the order of the tables by dragging a
table or by right-clicking and choosing Move. If you are following along with the
Excel import, let’s bring it into conformity with the Access, SQL Server, and data feed
ones. You’ll need to change the data type of the OrderID, EmployeeID, and ShipVia
columns to Whole Number from Decimal Number. In addition, change the Freight
data type to Currency.

Figure 2-20 Order Details table

Figure 2-21 Orders table

4 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Finally, there is the Products table (see Figure 2-22). Again, let’s make some
changes for those of you who imported this from Excel. Change the following to
Whole Number: ProductID, SupplierID, CategoryID, UnitsInStock, UnitsOnOrder,
and ReorderLevel. The UnitPrice column should be Currency. For all versions of the
import, note that the Discontinued column is TRUE/FALSE. Why all the changes for
tables imported from Excel? In both Access and SQL Server, the data types are part
of the table design and PowerPivot honors these. Excel does not have data types for
numbers, so PowerPivot plays safe by assigning Number (Decimal). It is just possible
that a ReorderLevel in a source Excel list or table could be 10.5 in the future. However,
Excel dates are correctly set as Date—the OrderDate column in the Orders table is an
example. The data types of columns imported from a data feed are defined in the data
feed and may or may not be what you want. It’s always best to check.

Notice the small icon on the CategoryID column (in the Products table, this time,
not the Categories table) if you are working with a SQL Server or Access import.
The two small tables indicate it’s a related column—if you hover the mouse, you can
see the other table and column involved in the relationship. In addition, there is a
small magnifying glass—this is used to show that the column is on the many side of a
relationship (in relational speak, it’s a foreign key). Primary keys (on the one side of a
relationship) have the two small tables but not the magnifying glass—you can check
this by looking, once more, at the CategoryID column in the Categories table. If you
are working with an Excel or data feed import, you’ll be able to see the column icons
after the next section, where you will see how to establish relationships.

Figure 2-22 Products table

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 4 3

Checking Relationships
In order for pivot tables (and charts) and DAX formulas to work with multiple tables,
it’s important for PowerPivot to understand any relationships that may exist between the
tables. For example, customers place orders, so the Customers and the Orders tables have
some kind of connection or relationship. In order to understand relationships, it helps
if you have a background in relational databases. PowerPivot honors any relationships
defined in a relational source (for example, SQL Server or Access or Oracle) and imports
them for you. In Excel, SSAS, data feeds, and other non-relational sources (such as tables
imported from text files), you can help PowerPivot establish the necessary relationships.
Without relationships, it is likely that your pivot tables and charts may not display the
correct data. When you create a pivot table, PowerPivot will suggest that relationships are
required (if it can’t find them) and optionally offer to create them for you. If that happens,
you will see a “relationship needed” message at the top of the pivot table’s field list along
with a Create button. It is recommended that you create the relationships yourself, if you
can—after all, PowerPivot may not find and create all the correct relationships.

Let’s see if PowerPivot has inherited any relationships from our source data. To view
relationships, go to the Design ribbon (Figure 2-23) and click Manage Relationships in
the Relationships group. You should be looking at something similar to either Figure 2-24
(Access and SQL Server sources) or Figure 2-25 (Excel/data feed source).

You either have relationships or you don’t! Let’s deal with the first situation that
applies when you import from a relational database like Access or SQL Server. In our
example, there are five relationships established. These are as follows (although the
order may be different):

1. Order Details to Orders (using the OrderID column)

2. Order Details to Products (using the ProductID column)

3. Orders to Customers (using the CustomerID column)

4. Orders to Employees (using the EmployeeID column)

5. Products to Categories (using the CategoryID column)

Figure 2-23 Design ribbon

4 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 2-24 Manage Relationships dialog showing relationships

Figure 2-25 Manage Relationships dialog without relationships

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 4 5

If you are already conversant with relational databases, notice that each relationship
must go from the many side (the child table) to the one side (the parent or lookup
table). In a one-to-one relationship (not shown here), the order is not important. Each
pair of tables in a relationship is linked by a column. That column has to appear in both
tables. On the left or many side, it’s known as the foreign key. On the right or one side,
it’s known as a primary key or the lookup key.

If you followed along with the Excel/data feed import, there are no relationships—
Excel/data feeds don’t support relationships, so there’s nothing for PowerPivot to inherit
as you import the data. This situation will also arise if you mix even relational imports.
For example, if you import a SQL Server table and an Access one, or two Access tables
from separate databases, the source databases do not include cross-database or cross-
software relationships. You can create relationships in two places from the Relationships
group on the Design ribbon. One, you can click Manage Relationships, and then click
the Create button in the Manage Relationships dialog. Two, you can click the Create
Relationship button directly. Both methods open the Create Relationship dialog
(Figure 2-26), where you have to create relationships one at a time. You can also create
relationships by right-clicking on a column header—this has the advantage of entering
the table and column name for you on the many side of the relationship.

If you want to follow along with your Excel/data feed example (if you have one), you
have to choose a Table and a Column at the top of the dialog. This should be a table
at the many side of a relationship (or any side, in a one-to-one relationship), and the
column must be the foreign key. Underneath, you choose the Related Lookup Table

Figure 2-26 Create Relationship dialog

4 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

and the Related Lookup Column. The table is on the one side of a relationship and the
column is its primary (lookup) key. If you get the tables in the wrong order, PowerPivot
will automatically reverse them for you. For the Excel/data feed import only:

1. Click the Design tab and choose Create Relationship.

2. Implement all of the five necessary relationships from the preceding list.

Adding Columns
It’s quite possible that your source data does not include everything you want in
a subsequent pivot report (table or chart). For example, you may wish to analyze
and compare sales amounts by year. Neither the sales amount nor the year exists
in our source data. It’s also likely that it does not include the necessary degree of
denormalization. Denormalization is a process of reassembling data from a segmented
and normalized transactional database to help in your BI analysis. Here, you might
want to analyze by both category name (that is, product categories) and product name
at the same time. Currently, the product name and the category name are in two
separate tables (Products and Categories). If you were to have them both in one table,
your pivot reports will display the correct data—for example, the product Chai will
appear under the Beverages category and not under the Seafood category. If you are
able to implement these and similar changes, you are creating business intelligence
from often-unfriendly source data that may originate from many different sources.
PowerPivot makes this (and more) easy. Not only does it centralize and assemble data,
it helps you to transform that data into intelligence.

One powerful, yet straightforward, way to change your data into intelligence is to
create new columns in your PowerPivot tables. You are helped in this by the versatility
of DAX formulas. In the upcoming example, we are going to use DAX three times. In
this chapter, the DAX examples are to give you a taste and get you started (and possibly
excited!). There are many more examples in Chapter 3, and a whole part of this book
(Part II) is devoted to DAX. Let’s turn our data into real business intelligence by adding
the sales amount, and the year an order was made, and by having product names and
category names together. If you are working along, you can use the PowerPivot tables
imported from either Excel, Access, SQL Server, or a data feed (or a combination of
two or more of these sources, if you’ve been experimenting). PowerPivot makes the
source data transparent.

To add business intelligence to PowerPivot using DAX:

1. Click on the tab for the Order Details table to make it current.

2. You’ll see an empty column at the right of the table with the heading Add
Column. Click anywhere in this column and type the following DAX formula

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 4 7

(instead of typing the table and column names, it’s much easier to type the letter
“o” after the equal sign (=), and use the arrow keys to highlight, then press tab):

='Order Details'[Quantity] * 'Order Details'[UnitPrice]

The formula appears in the formula bar as you start to type. When you are finished,
press enter and you have a new column of data—the column is probably now
entitled CalculatedColumn1. The table name is not absolutely necessary, provided
you are using columns from the same table. The following syntax is a shorter
alternative—in this case, type the letter “q” after the equal sign (=):

=[Quantity] * [UnitPrice]

3. Rename the column to Sales Amount by double-clicking the column header,
typing the new name, and finally pressing enter. Your result should look like
Figure 2-27.

Figure 2-27 DAX calculated column for Sales Amount

4 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

That’s the Sales Amount done. Now, to work out the year for each order:

1. Click the Orders tab to make the Orders table current. If you can’t click the tab,
you might still be in the formula bar—pressing enter will exit from the formula
bar. Scroll, if necessary, to find the first empty column with a heading of Add
Column (or click the Add button on the Design menu). Click in the column and
type the following DAX (the single quotes are optional if there is no space in the
table name), and then press enter:

=YEAR('Orders'[OrderDate])

2. Again, rather than type the table and column name, type the letter “o” and
then select 'Orders'[OrderDate] and press tab. This is known as
AutoComplete—it’s pretty useful. Rename the column to Year and press enter.
The result is shown in Figure 2-28. The following shorter syntax also works:

=YEAR([OrderDate])

Figure 2-28 DAX calculated column for Year

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 4 9

Finally, to put the category name and product name together:

1. Click the Products tab to view the Products table. Click in the Add Column
column, and type the following DAX (you can type the letter “c” and use
AutoComplete to save typing the table name and the column name). If you type
the letter “r” after the equal sign (=), you can save typing the function name in full:

=RELATED('Categories'[CategoryName])

2. Press enter to accept the DAX formula (to back out at any time as you enter
DAX, press esc). The single quotes are optional. Rename the column to Category
by double-clicking, typing the new name, and pressing enter. Hopefully, you are
looking at something like Figure 2-29. All of the three DAX formulas here are
known as calculated columns.

Figure 2-29 DAX calculated column for Category

5 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you are from a business intelligence background and are familiar with SSAS, be
aware that you have created a star schema and a cube in a few minutes! In fact, this
is an SSAS cube—although SSAS is nowhere to be seen. There is a hidden copy of
SSAS running behind PowerPivot—even without you having to install SSAS (the
hidden copy is installed automatically when you install PowerPivot for Excel). If you
are completely new to business intelligence, you have just accomplished something that
normally (before PowerPivot) might take days. Cool.

A Quick Pivot Table
It would be nice to see your new “cube” as a cube—we are still looking at our data
as separate tables; PowerPivot enables us to do much better. One of the best ways
to visualize business intelligence is through a pivot report, which can be a pivot table
or a pivot chart (or multiple pivot tables and pivot charts). The pivot table uses
MultiDimensional eXpressions (MDX) and the Excel CUBE() functions to extract the
data from the “hidden,” in-memory PowerPivot SSAS cube. Pivot reports incorporate
a vast range of functionality. There is a separate chapter later (Chapter 5) just on pivot
tables and charts. In this overview chapter we are going to create a simple (yet quite
powerful) pivot table just as a starter.

To create a pivot table from PowerPivot tables:

1. Click the Home tab to display the Home ribbon in PowerPivot. In the Reports
group of the Home ribbon, click PivotTable followed by PivotTable in the drop-
down menu—the menu is shown in Figure 2-30.

2. In the Create PivotTable dialog (Figure 2-31), either accept New Worksheet (the
default) or choose Existing Worksheet. You are switched out of the PowerPivot
window back into the original Excel workbook, and an empty pivot table is
displayed in an Excel worksheet. You can view the underlying connection by

Figure 2-30 PivotTable menu

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 5 1

going to the Data ribbon and clicking the Connections button in the Connections
group. This opens the Workbook Connections dialog. If you click the Properties
button, the Connection Properties dialog opens. In this dialog, the Definition tab
shows a data source of $Embedded$ in the Connection string text box. Under
no circumstances should you attempt to make any changes—you may lose the
connection altogether.

At the right of the worksheet, there is the PowerPivot Field List (this is often simply
called the Field list). This lists tables and columns from PowerPivot, as well as drop-
zones labeled Slicers Vertical, Slicers Horizontal, Report Filter, Column Labels, Row
Labels, and Values. If you can’t see the PowerPivot Field List, click inside the pivot table
itself. If you still can’t see it, with the focus inside the pivot table, click Field List in the
Show/Hide group of the Excel PowerPivot ribbon.

Before we begin to add table columns to the pivot table, try just one more DAX
formula. The reason for doing so is to give you a quick glimpse of the second main use
for DAX. This is to create measures—the previous three DAX formulas were used for
calculated columns. Chapter 3 examines the difference between calculated columns
and measures in some depth. For now, it’s sufficient to know that a measure is often a
numeric value that appears in the main body of the pivot table (Values drop-zone in
the PowerPivot Field List) and allows you to create totals, subtotals, and other context-
sensitive calculations. Measures are often called facts or metrics—we are going to create
one that shows sales of individual product and category as percentages of total sales.
Calculated columns allow you to expand upon your source data and are often attributes
that describe the measures. Calculated columns are often added to the slicers, columns,
or rows of a pivot table; they give your measures context.

You have just created a calculated column called Year, if you are following the
practicals. As a result, you can analyze sales by year. The Sales Amount calculated
column created earlier can be used as a measure. When you explicitly create a measure
(using the following steps), it’s done from the Excel workbook. These explicit measures

Figure 2-31 Create PivotTable dialog

5 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

generally appear as numeric values in the center of the pivot table. When you create a
calculated column, you do so in the PowerPivot window. Calculated columns can be
used as attributes that describe, and are used to slice and dice, the values in a pivot table
(Year is an example—for SSAS and MDX veterans, such attributes are the equivalent
of non-measure dimension attributes in SSAS cubes) or they can be used as measures
(Sales Amount is an example). To add a calculated DAX measure:

1. In Excel, click New Measure in the Measures group of the PowerPivot ribbon to
open the Measure Settings dialog (Figure 2-32).

The Measure Settings dialog is where you specify the name and the DAX
formula for the new measure. In addition, you also select a PowerPivot table to
act as a host for the measure. It’s a good idea to assign new measures to a table
that already contains measures (or facts or metrics). In this case, Order Details
is perfect. It already has a source column called Quantity—this came directly
from the source data and is a good candidate for a measure. In addition, there is a
calculated column, called Sales Amount, which can be used as a measure. Choose
Order Details as the Table name. When you explicitly create a measure, as here,
you won’t see it if you flip to the PowerPivot window. However, of course, you
could see Sales Amount, which is a calculated column used as a measure, and Year
and Category. In addition, in the PowerPivot Field List, an explicit, calculated
measure has a small calculator icon—a calculated column has no special symbol
and looks just like any other column in a table.

Figure 2-32 Measure Settings dialog

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 5 3

2. Enter DAXMeasure as the Measure Name. This is reflected in the Custom
Name. The first name is the generic name for the measure. By default, this is the
name of the measure in all pivot tables and charts. You can override this name
on an individual pivot table basis by changing the Custom Name property. To do
so, while viewing any pivot table or chart, click the measure in the field list of the
PowerPivot Field List and then click Measure Settings on the PowerPivot ribbon.
Any custom name you enter is then valid for that pivot table or chart.

3. In the Formula text box, enter either of the two following DAX formulas (as
shown in Figure 2-33):

=SUM([Sales Amount])/CALCULATE(SUM([Sales Amount]),ALL('Order

Details'))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),ALL('Order Details'))

This formula (whichever version you used) is calculates the Sales Amount, of
whatever is being viewed in the pivot table, divided by the total Sales Amount of all
records in the Order Details table. The DAX syntax involved is covered thoroughly
later in the book—so don’t be too concerned if it’s not exactly intuitive. For now, it’s
more important to concentrate upon the results. Remember to use letters first and then

Figure 2-33 DAX measure

5 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

the tab key as you type to fully exploit AutoComplete. Notice, also, how matching
parentheses are highlighted as you type—this helps to eliminate parenthesis mismatch
in your formulas. Click Check Formula to verify your syntax, and then click OK.

In the PowerPivot Field List, you should see the new measure under the Order
Details table (you might need to expand the table in the field list, or right-click to see
expansion options) as in Figure 2-34. If you need to edit the formula, select it in the
PowerPivot Field List and click Measure Settings on the Excel PowerPivot ribbon.
Our new explicit, calculated measure, DAXMeasure, has a small calculator icon. The
calculated column, Sales Amount, does not. The new measure is also added to the
Values drop-zone—if it’s not, drag it from the PowerPivot Field List to the drop-zone.

Figure 2-34 PowerPivot Field List

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 5 5

Figure 2-35 Initial pivot table

Now, to populate the rest of the pivot table:

1. First, drag Sales Amount (Order Details table) from the field list in the
PowerPivot Field List to the Values drop-zone, just below the DAXMeasure. It
appears in the drop-zone as Sum of Sales Amount. Right-click and choose Edit
Measure. Change the Custom Name to DAXColumn and click OK.

2. Click on the value for DAXColumn in the pivot table itself. Now click the
PivotTable Tools tab to display the PivotTable Tools, Options ribbon. Verify
that the Active Field in the Active Field group is DAXColumn and click Field
Settings in the same group. In the subsequent Value Field Setting dialog, click the
Number Format button to open the Format Cells dialog. Choose Currency as the
format and click OK twice to exit both dialogs.

3. Drag Sales Amount a second time to the Values drop-zone, below the original.
Rename it as before, but this time, call it GUIColumn. Right-click the value for
GUIColumn in the pivot table, and move the mouse over Show Values As in the
context menu. From the flyout menu, choose % of Grand Total.

4. Select the value for DAXMeasure in the pivot table, and from the PivotTable
Tools ribbon, click Field Settings. Click the Number Format button in the dialog
and choose Percentage before clicking OK twice. Your pivot table should look like
Figure 2-35, although your currency symbol for the DAXColumn value may be $,
or €, or otherwise.

5. From the Customers table in the PowerPivot Field List field list, drag first
Country, then City to the Row Labels drop-zone—and observe the pivot table.
Make sure that City is positioned below Country.

6. From the Products table, drag Category, then ProductName to the Column
Labels drop-zone, and again watch the pivot table.

7. Right-click on Argentina in the pivot table and move the mouse over Expand/
Collapse. In the flyout menu, choose Collapse Entire Field. Repeat this for
Beverages in the pivot table.

5 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

8. Drag Year from the Orders table to the Slicers Horizontal drop-zone. Do the
same for the Category column from the Products table.

9. Finally, drag LastName from the Employees table to the Report Filter drop-zone.
Hopefully, your pivot table is similar to Figure 2-36.

How many ways would you like to filter your BI report? Here are a few options—a
later chapter (Chapter 5) covers pivot table filtering in more detail. Pivot table filtering
is different from filtering the source data in the PowerPivot window—the latter
restricts the data available in the pivot table. If you want to quickly experiment with
filters, try these:

1. Click any year in the Year slicer. To select two years, hold down the ctrl key after
having selected the first one. If you hold down the ctrl key before clicking the
first one, you can toggle your choices in the slicer. To remove the current slice,
click the small filter funnel icon at the top right of the slicer.

Figure 2-36 Completed pivot table

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 5 7

2. Click any category in the Category slicer. You can slice on both Year and Category
at the same time, if you wish.

3. Click the drop-down button next to the Row Labels caption and select a country
or two. To see all of the countries again, click once more and choose Clear Filter
from Country. You can also sort rows and columns through the filter button (for
columns, the button is next to the Column Labels caption).

4. There is also a Report Filter called LastName. The filter button is in the adjacent
cell with the caption All. Try an employee or two. To remove this filter, choose All
from the drop-down.

Slicers, Report Filters, and Row/Column Labels filters are all activated differently!
However, they all have the same ultimate effect—they change the context of the
measures in the value section of the pivot table. They are also interdependent. For
example, you can choose Beverages from the slicer or the Column Labels filter,
and each updates the other. If you watch the DAXColumn, GUIColumn, and
DAXMeasure values changing, it can be tricky at first to understand what’s happening.
It may be easier if you observe the figures for the Grand Total for Total DAXColumn,
Total GUIColumn, and TotalDAXMeasure. The DAXColumn measure was created
as a calculated column (a DAX formula) in the PowerPivot window. The GUIColumn
measure was created from the DAXColumn using the mouse, in the GUI of the pivot
table. The DAXMeasure measure was created directly as a calculated measure in the
Excel workbook. There are so many possibilities for creating and filtering your BI!

NOTE
Observe how GUIColumn and DAXMeasure behave. With no filters, they are the same. When you impose a filter,
they are often different. This is because the GUIColumn is sensitive to the current filter context. The DAXMeasure
uses the DAX keyword ALL to override the current filter context. These topics are discussed in more detail in
Chapter 4.

A Very Quick Pivot Chart
You are not limited to pivot tables to display your PowerPivot data. Pivot charts can
add dramatic visualization to your business intelligence. If done sensibly, pivot charts
can bring your pivot tables to life and immediately highlight interesting information.
Of course, if pivot charts are overly elaborate, they can also obfuscate the data—you
can easily turn your business intelligence back into relatively meaningless data. Our
example, coming up shortly, is deliberately simple and hopefully clear.

5 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

There are three ways in which to add pivot charts. First, you can return to the
PowerPivot window and choose the PivotTable drop-down from the Reports group
of the Home ribbon. Then, from the drop-down, choose any option that mentions
PivotChart or Charts. Second, you can use the same options from the PivotTable
drop-down in the Report group of the PowerPivot ribbon in the Excel workbook. Both
of these approaches generally create a new pivot chart that is not directly linked to an
existing pivot table—in fact, a new pivot table is created as the basis for the pivot chart.
The third method, instigated from the PivotTable Tools group on the Options ribbon
in the Excel workbook, makes it easy to base the pivot chart on an existing pivot table.
In this example, we’ll use the latter, as it’s so convenient:

1. Remove the GUIColumn and DAXMeasure columns from your pivot table. An
easy way to do so is to right-click the column name in the Values drop-zone and
choose Remove Field. You should have one value remaining, DAXColumn, which
represents Sales Amount.

2. In the Category horizontal slicer, click Beverages and, while holding down the
ctrl key, click Condiments. You can also drag with the mouse. Your pivot table
should look like Figure 2-37.

3. Click the drop-down button next to the Row Labels caption. Click Select All to
remove all the check marks, and turn on Canada and USA. Click OK to close the
drop-down.

4. Click PivotTable Tools | Options to see its ribbon. If you can’t see PivotTable
Tools at the top of the Excel window, click anywhere inside the pivot table
(clicking inside a slicer is not sufficient). In the Tools group, click PivotChart,
accept the default of the first Column style of chart, and click OK.

5. Drag the pivot chart to a convenient location and, while holding down the ctrl
key, click Confections in the horizontal slicer. My result is shown in Figure 2-38.
Yours may differ somewhat if you have been experimenting with filters (for
example, the LastName Report Filter or the Year slicer). That’s not too important
at this stage. What is important is that you have created, in just a few seconds, a
very powerful visualization of your business intelligence.

Notice that many of the pivot table filters are replicated in the pivot chart. You
can use either or both. The chart duplicates the Report Filter on LastName and the
Column/Row Labels filters. The pivot table slicers are not reproduced in the pivot
chart—simply use the ones above the pivot table. The Category filter in the chart is
from the pivot table’s Column Labels filter and is not the Category slicer, although the
two are interdependent.

C h a p t e r 2 : P o w e r P i v o t : O v e r v i e w 5 9

Well done! In this PowerPivot overview chapter, you have already transformed raw
source data into BI. Along the way, you’ve discovered some (but not all) of the major
features of PowerPivot. Before the advent of PowerPivot, this would have taken you
a little bit longer—and probably, it would not have been quite so straightforward.
Within a few minutes, unfriendly and fragmented data has become both meaningful
(information) and easily visualized and discovered (business intelligence).

Figure 2-37 Filtered pivot table

6 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Of course, there are other aspects to PowerPivot. For instance, there are many other
ways of assembling data. Filtering warrants further investigation (you are not limited
to filtering a pivot table or chart). You can also sort data and perform sophisticated
analysis (for example, increases in sales from year to year with a couple of mouse clicks).
Perhaps we should look further at relationships—you can even join data from relational
tables to data from multidimensional cubes (that’s quite tricky to do if you rely solely
on SQL or MDX, but it’s easy in PowerPivot)! And we have hardly begun to exploit
the tremendous versatility of DAX. These topics (and more) are covered in subsequent
chapters. But, hopefully, this overview chapter has revealed a few of the incredible
possibilities. The next chapter is an in-depth guide to all that is PowerPivot.

Figure 2-38 A pivot chart

PowerPivot: In-Depth

Chapter 3

6 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This chapter goes a lot further than the previous two introductory chapters. It’s
a detailed and comprehensive guide to all of the ribbons: Excel PowerPivot
ribbon, PowerPivot Home ribbon, PowerPivot Design ribbon, and PowerPivot

Linked Table ribbon. All of the ribbon groups and buttons are discussed, some with
step-by-step examples for you to follow. In the course of this chapter, you will become
familiar with most of the dialog boxes and menus that are relevant to PowerPivot. This
is essentially a grand tour of the PowerPivot graphical user interface. Everything you
are likely to meet in a PowerPivot window is covered. The DAX language is introduced
only briefly; Chapter 4 is specifically devoted to DAX. Many of the later chapters in
the book provide a reference guide to DAX syntax. Pivot table manipulation and
customization are covered in Chapter 5.

The main emphasis of this chapter is on how to assemble your data in PowerPivot.
There is also a discussion of relationships between PowerPivot tables, including
multidimensional to relational relationships. The main data sources used in this chapter
are relational, multidimensional, flat files, Excel (including linked tables), and data
feeds. There is even a little MDX!

Key concepts Importing data, relating data, refreshing data, filtering and sorting
data, formatting data, DAX calculated column, MDX calculated measure, SQL
and MDX query design, PowerPivot data in a pivot table

In this chapter, we take a more detailed look at some of the PowerPivot features.
The last two chapters presented a quick start and an overview—this time, it’s a more
comprehensive and in-depth look, especially of what can be achieved largely by point-
and-click. Don’t worry, there is plenty of DAX in later chapters!

Most of the features you will use for PowerPivot and PowerPivot pivot tables are
in four main areas. These are the PowerPivot ribbon in Excel; the Home and Design
ribbons (you may also sometimes see a third Linked Table ribbon) in PowerPivot
itself; the PowerPivot Field List in Excel; and the PivotTable Tools Options and
Design ribbons in Excel. In general terms, the first two are used to assemble the
necessary data and add a pivot table to a worksheet in Excel. The last two are used to
place and customize the data in the pivot table. Chapter 5 will consider pivot reports
(tables and charts) in depth, and will take a close look at the PowerPivot Field List
and the PivotTable Tools Options and Design ribbons. This chapter concentrates on
preparing the data, and it deals with the PowerPivot ribbon in Excel and the Home
and Design and Linked Table ribbons in PowerPivot. Let’s start with the PowerPivot
ribbon in Excel.

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 6 3

PowerPivot Ribbon in Excel
Figure 3-1 shows the PowerPivot ribbon in Excel. This ribbon is divided into seven
groups: Launch, Measures, Report, Excel Data, Options, Show/Hide, and Relationship.
A couple of these groups contain more than one button or icon.

Launch Group
The Launch group contains a single button called PowerPivot Window. This opens a
new PowerPivot window and creates an empty PowerPivot model in memory, if one is
not already open. If you already have a PowerPivot window open, the button switches
you into PowerPivot. In addition, you could also use the Windows task bar, or press
alt-tab, to switch to PowerPivot, if it’s already open.

Measures Group
The Measures group has three buttons. New Measure is used to create a new calculated
measure for your pivot tables or charts in the current Excel workbook. You do so by entering
a suitable DAX formula composed of one or more DAX functions. Delete Measure is used
to remove an existing measure that you had already created with New Measure. Finally, the
Measure Settings button allows you to modify the DAX formula you initially entered when
creating a new measure. Chapter 4 gives you an overview of DAX formulas. Later, a whole
section of the book (Part II) is devoted to a comprehensive reference to all DAX functions.

Report Group
The Report group has just the one button labeled PivotTable. This opens a drop-down
menu that enables you to insert a pivot table or a pivot chart, or both, into an Excel
worksheet. The menu is shown in Figure 3-2. The pivot report (table and/or chart) will
be based on the data in your PowerPivot window. It duplicates the functionality of the
PivotTable button in the Reports (yes, Reports, not Report!) group of the PowerPivot
Home ribbon. Once you have your PowerPivot data, you can insert a pivot report into
an Excel worksheet from either Excel or PowerPivot.

Figure 3-1 PowerPivot ribbon in Excel

6 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Excel Data Group
The Excel Data group consists of two buttons. The Create Linked Table button enables
you to create a PowerPivot table from a table in an Excel worksheet. This only works with
tables in the current Excel workbook. If you have a simple data range in a worksheet (as
opposed to an Excel table), it will automatically be converted into an Excel table, complete
with column headers. This has two implications. One, any data in the current workbook
must be explicitly or implicitly converted to a table. Two, if you wish to import data into
PowerPivot from an external Excel workbook, you must either use the From Other
Sources button in the Get External Data group of the Home ribbon in PowerPivot itself,
or copy and paste (more on external Excel workbooks later in this chapter). If you wish to
try out linked tables with PowerPivot, here are a few very simple steps to get you started:

1. Enter some data into a cell in an Excel worksheet. You can enter a number or
some text. For this example, we are not using a column header, although you could
do so if you wanted.

2. With the focus on the same cell, go to the Home ribbon in Excel, and from the
Styles group, click Format as Table and choose a style. In the ensuing dialog,
click OK. Your data is now explicitly formatted as an Excel table, perhaps with
a column heading of Column1.

3. To convert the Excel table into a PowerPivot table, go to the PowerPivot ribbon.
Make sure the focus is within the table, and then click the Create Linked Table
button in the Excel Data group. This switches you into the PowerPivot window.

Figure 3-2 PivotTable menu

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 6 5

If this is the first time you tried this, your PowerPivot table is probably called
Table1. Notice the linked table symbol on the Table tab. If the original Excel
table was created without column headings, the column in the PowerPivot table is
called Column1. You can then right-click (or double-click) to rename either the
PowerPivot table or the PowerPivot column heading.

4. Switch back to Excel and change the data you originally entered. You can go
back to Excel by clicking Switch to Workbook on the Quick Access toolbar in
PowerPivot. If you now switch back to PowerPivot, you can see that the data in the
linked table has been automatically refreshed. This raises an interesting question: If
PowerPivot tables are automatically updated by changes to data in an Excel linked
table, why is there an Update All button in the Excel Data group? The answer
lies in the PowerPivot window itself. When you add your first linked table to
PowerPivot, it acquires a new third contextual ribbon called Linked Table. This has
just one group, Linked Tables. One of the buttons in this group is labeled Update
Mode. This button opens a small drop-down menu where you can set the update
mode. The default is Automatic, which is why your PowerPivot table was refreshed
when you made a change to the Excel table. The only other option is Manual. If
you set it to manual, then you can use the Update All button in the PowerPivot
ribbon in Excel. There is also an Update All button in the Linked Tables group of
the Linked Table ribbon in PowerPivot itself. Both Update All buttons will refresh
all data from all linked tables in PowerPivot. In PowerPivot itself, there is also an
Update Selected button, but this refreshes only the current PowerPivot table.

5. The real world is the real world, and not a textbook. Errors occur—so here we are
going to deliberately cause one. Delete the original table in the Excel worksheet—
you can do so by selecting the table cell and its column header and pressing del.
Now click the Update All button on the PowerPivot ribbon (you can also use the
Update All button on the Linked Table ribbon in PowerPivot). Even if the update
mode is set to automatic, this forces an immediate manual refresh of the linked
table data in PowerPivot. Of course, the original Excel table no longer exists and
the Errors in Linked Tables dialog opens. This dialog is shown in Figure 3-3.

Figure 3-3 Errors in Linked Tables dialog

6 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

You could always click OK and ignore the error, but try the Options button. This
opens another dialog called Select Action, which is shown in Figure 3-4. Your
choices here include: Do Nothing, Change Excel Table Name, Remove Link to
Excel Table, and Delete PowerPivot Table. The second option is disabled unless
you had renamed (rather than deleted) the original Excel table. The first option
ignores the error. The third option preserves the PowerPivot table but removes the
link. The fourth option totally removes the table from PowerPivot. Select Delete
PowerPivot Table and click OK. If you switch to the PowerPivot window, you can
see that the table has disappeared.

Options Group
The Options group has a single button labeled Settings. This leads to the PowerPivot
Options & Diagnostics dialog. In this dialog there are a number of advanced settings—
it also displays the version number of your PowerPivot. The advanced settings are
beyond the scope of this introductory book, but please note the check box on the
Support & Diagnostics page labeled Enable PowerPivot Tracing for the Current Excel
Session. If you enable this, a trace file is created. The trace file can then be opened in
SQL Server Profiler—if you are a SQL Server administrator, you may already be aware
that SQL Server Profiler can be used against SSAS. PowerPivot uses a hidden copy of
SSAS running within the Excel process, so it works with SQL Server Profiler.

Show/Hide Group
There is a single Field List button in this group. Once you have a PowerPivot pivot report
(table or chart) in your Excel worksheet and the focus is on the pivot report, you can
toggle the PowerPivot Field List on and off. Pivot tables and PowerPivot Field Lists are
covered in detail in Chapter 5.

Figure 3-4 Select Action dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 6 7

Relationship Group
The Relationship group has a single item, Detection. This is useful when you import
data into PowerPivot from a non-relational source or from multiple sources and you
wish to relate PowerPivot tables. Relationships are covered later in this chapter when we
discuss the PowerPivot Design ribbon, which has a Relationships group. When you click
Detection in Excel, you can toggle automatic detection of relationships off and on. When
Detection is turned on (the default setting), PowerPivot will try to find and automatically
implement relationships between PowerPivot tables in the PowerPivot Field List.
When you use the Relationships group on the PowerPivot Design ribbon, you manually
create the relationships, if they don’t already exist. It is recommended that you create
relationships manually—it gives you that much more control, and the automatic detection
may not find every relationship you require and may do so in a way that you don’t want.

That concludes our tour of the PowerPivot ribbon in Excel. It’s time to move on
to the ribbons in the PowerPivot window itself. There are two main ribbons that are
always visible: Home and Design. If you have a linked Excel table in PowerPivot, you
will have a third contextual ribbon called Linked Table—it’s only visible if the linked
table is current. Let’s start with the Home ribbon: You must be in the PowerPivot
window and not the Excel workbook (as a reminder, use the PowerPivot Window
button in the Excel PowerPivot ribbon to switch to PowerPivot).

Home Ribbon in PowerPivot
Whenever you open PowerPivot, the Home ribbon is the default ribbon. If PowerPivot
is already open and you switch to PowerPivot from Excel, PowerPivot remembers the
last ribbon, so you may need to click the Home tab to see the Home ribbon, if you had
previously been looking at the Design ribbon (or the Linked Table ribbon, if you had
been viewing a linked table in PowerPivot). The Home ribbon is shown in Figure 3-5.

Clipboard Group
The first button, Paste, creates a new PowerPivot table and copies in data from the
Clipboard. This is yet another way of moving Excel data (though the Clipboard data
doesn’t necessarily have to originate in Excel) into PowerPivot. The second and third

Figure 3-5 Home ribbon in PowerPivot

6 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

buttons in the Clipboard group, Paste Append and Paste Replace, are only operative
when you are viewing a PowerPivot table created through the Paste button. Please note
that Paste Replace will replace the whole table; thus, if you have only one piece of data on
the Clipboard, this will overwrite the entire table. The Copy button allows you to copy
data between PowerPivot tables. After using Copy, you can use Paste to create a new
table or Paste Append or Paste Replace to place the copied data into a table previously
created through Paste. You can’t copy and paste between existing PowerPivot tables, but
you can paste into a new PowerPivot table. There is an additional use for Copy—you
can subsequently paste into an Excel worksheet, if you want to perform traditional Excel
analysis on the data, or into another application such as Word or PowerPoint.

Get External Data Group
The Get External Data group represents the core of PowerPivot. It includes all of the
main data sources for your PowerPivot tables (with the exception of linked Excel tables
and Clipboard data). It is of vital importance, so we’ll devote some time to looking at
its buttons and features. The buttons in this group (reading from top to bottom and left
to right) are From Database, From Report, From Data Feeds, From Text, From Other
Sources, and Refresh. All of these buttons, apart from the Refresh button, result in
further dialogs or drop-downs. The Refresh button is disabled until you have imported
some data. Let’s start with From Database.

From Database
The From Database button results in three main options: SQL Server, Access, and Analysis
Services or PowerPivot. As SQL Server appears first and is so popular, we’ll consider it first.
Even if you don’t have SQL Server, I advise you to read the section—some topics covered
(for example, query writing and filtering) are common to many of the PowerPivot data
import options. The From Database drop-down menu is shown in Figure 3-6.

From SQL Server The previous chapter has step-by-step instructions and a practical
on how to import SQL Server tables—in case you jumped into the book at this point.

If you choose SQL Server, you have to provide a server name, a database name, and
select the relevant tables and/or views (alternatively, you can write a Select statement

Figure 3-6 From Database drop-down menu

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 6 9

or type the name of a stored procedure that returns data). We looked at SQL Server
imports in the previous chapter—but please notice that in the Select Tables and Views
stage of the Table Import Wizard, there is a Preview & Filter button (the Select Tables
and Views stage does not appear if you chose to write your own query). The Select
Tables and Views dialog is shown in Figure 3-7. If you click the Preview & Filter
button, it opens a Preview Selected Table dialog on the currently selected table. This
dialog is shown in Figure 3-8. As well as showing a preview of the data, it allows you to
turn off those columns you don’t need (in effect, you are writing a Select column list). In
addition, each column has a small drop-down button that lets you filter and/or sort the
data—in effect, you are writing a SQL Where and/or Order By clause. If you change
your mind about filtering the data, you can click the Clear Row Filters button or reopen
the filter drop-down in the column heading and choose (Select All) or Clear Filter
From. You can also filter and/or sort data retrospectively in the PowerPivot window
or in a pivot table in Excel. Filtering data at this import stage or in the PowerPivot

Figure 3-7 Select Tables and Views dialog

7 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

window (that is, filtering the source data) means you can’t remove the filter later in a
pivot table. Filtering data at the import stage reduces the size of the PowerPivot model.
You can also add, change, or remove filters and sorts you impose during the Table
Import Wizard by using the Table Properties button in the Properties group of the
PowerPivot Design ribbon—so it’s not a disaster if you get it wrong in the first place.

As just mentioned, you can opt to write your own queries instead of choosing tables
and/or views. The query can be your own Select statement, or you can call a stored
procedure that contains a Select statement and returns data. The choice is shown in
the Choose How to Import the Data stage of the Table Import Wizard. This dialog
is shown in Figure 3-9. If you turn on the option button for Write a Query That
Will Specify the Data to Import, and click Next, you will be in the Specify a SQL
Query dialog, which is shown in Figure 3-10. In this dialog you can give your query
a name (this will be the name of your PowerPivot table) and type in your SQL Select
statement. As this is SQL Server, the SQL will be T-SQL (Transact-SQL), which is
the SQL dialect supported by SQL Server. Note, however, the Design button. This is
easily missed, but it’s very, very useful, especially if your SQL is a little rusty! Clicking
this button opens a query designer in graphical mode. This graphical query designer for

Figure 3-8 Preview Selected Table dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 7 1

SQL is shown in Figure 3-11. The Edit as Text button, at the top left, toggles between
graphical mode and text mode. If you make changes in text mode, you will lose any
previous changes you made in graphical mode. The Import button allows you to use
prewritten SQL script files. The Run Query button displays the results of your query in
the Query Results pane at the bottom of the designer, so you can check whether your
query is working as you want. This Query Results pane can be collapsed and expanded,
as can the Selected Fields, Relationships, and Applied Filters panes at the right of the
designer. The Database View pane to the left enables you to add tables or views or stored
procedures to the query. In addition, you can choose particular columns from your tables
or views. And, as a really nice touch, you can choose the columns you want from a stored
procedure that returns data. The columns you choose are shown in the Selected Fields
pane. In the same pane, the Aggregate column has a drop-down that you can use to create
Group By columns and aggregate functions on other columns, such as Sum or Count.

Figure 3-9 Choose How to Import the Data dialog

7 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you add two or more tables, the designer should pick up any relationships in
your source data and display them in the Relationships pane. Should there be no
relationships, you might try clicking Auto Detect to automatically add relationships.
Alternatively, you can click the Add Relationship button (the third from the left) and
choose your own fields for the join. If you do so, the Edit Fields button lets you change
the columns used in the relationship. You can also add relationships between tables in
PowerPivot later, but creating them at this point makes a fast PowerPivot even faster, as
you are effectively denormalizing data before importing.

The Applied Filters pane has an Add Filter button (the first one on the left). This
adds a Where clause to your query. Some of the options for the Where clause include
Is (=) and Like. This feature and all of the other features in the query designer help you
write your SQL. However, it’s even more of a help if you already understand SQL, so
you have some idea what it’s doing for you! When you click OK to exit the designer,
you can see the SQL generated in the Specify a SQL Query dialog. If you want to know
a little more about writing SQL queries, please refer to Appendix A or to my book
Practical SQL Queries for Microsoft SQL Server 2008 (McGraw-Hill/Professional, 2010).

Figure 3-10 Specify a SQL Query dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 7 3

From Access The previous chapter has step-by-step instructions and a practical on
how to import Access tables—in case you jumped into the book at this point.

SQL Server is going to be a common choice for many readers’ source data. Access is
also likely to be very popular. As a reminder, you are not limited to only one type of data
source—you can mix and match. For example, you might have a few PowerPivot tables
from SQL Server and a few from Access. If you choose Access, in the first Connect to
a Microsoft Access Database dialog, you will see a Browse button. The Connect to a
Microsoft Access Database dialog is shown in Figure 3-12. Clicking this Browse button
will assist you in locating your Access database without typing pathnames and filenames.
The Browse button leads to an Open dialog. There is a drop-down at the bottom right
that includes both .accdb (Access 2007 and 2010) and .mdb (pre-Access 2007) Access
database types. Apart from that, importing from Access is very similar to importing
from SQL Server. You get to decide whether to pick tables or to write your own queries.

Figure 3-11 SQL graphical query designer

7 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

When you elect to pick tables, you will not see the schema names as you do with SQL
Server. When you elect to write your own query, you have to type your own Access SQL;
there is no handy graphical query designer as there is for SQL Server.

From Analysis Services or PowerPivot Importing from SSAS or PowerPivot was
not covered in the previous chapter. And, as it’s going to be so important to many readers,
it’s worth a detailed look here.

There are two important preliminary points to make. One (and you may be asking
this if you are already familiar with SSAS cubes), why bother to create an on-the-fly
PowerPivot cube when you already have a prebuilt SSAS cube? Two, why do SSAS and
PowerPivot appear as import options on the same menu choice?

The beauty of importing from an SSAS cube is that you are no longer limited to cube
data. You can combine SSAS multidimensional cube data with SQL Server relational
data, for example, or with data from many other sources. Furthermore, you can create

Figure 3-12 Connect to a Microsoft Access Database dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 7 5

relationships between multidimensional and relational data, and, of course, display both
in the same pivot table. Combining multidimensional and relational data is very difficult
without PowerPivot. You have to know an awful lot of SQL and MDX! In PowerPivot,
it only takes a few mouse clicks and maybe one or two simple DAX functions to create
the mother of all data marts! PowerPivot uses a hidden copy of SSAS running in the
Excel process space. As such, importing into PowerPivot from another PowerPivot
or from SSAS are virtually the same under the hood. There is one proviso: In order
to import PowerPivot tables into PowerPivot for Excel, the source PowerPivot must
be PowerPivot for SharePoint (that is, from a PowerPivot workbook that has been
published to a PowerPivot-enabled SharePoint document library) and not PowerPivot
for Excel.

Here is a short step-by-step guide (you can try this if you have the SSAS Adventure
Works database and cube) to importing into PowerPivot from SSAS:

1. On the Home ribbon in PowerPivot, click From Database in the Get External
Data group.

2. From the ensuing drop-down, choose From Analysis Services or PowerPivot.
This opens the Connect to Microsoft SQL Server Analysis Services dialog. In this
dialog, you specify an SSAS server and database name. The dialog is shown in
Figure 3-13. If you have the SSAS Adventure Works database, select it from the
drop-down, or adapt the next few steps to your own SSAS database.

3. Click Next to open the Specify a MDX Query dialog where you can type an MDX
query, if you want. The Specify a MDX Query dialog is shown in Figure 3-14.
Or, at the bottom right in this dialog, click the Design button. You should be
looking at a graphical MDX query designer. This is almost identical to the MDX
designer in SQL Server Reporting Services (SSRS) and you may recognize it,
except there is no option to switch into Data Mining eXtensions (DMX) from
MDX, as there is in SSRS. The graphical query designer is shown in Figure 3-15.
PowerPivot currently supports MDX, but not DMX. In the MDX query designer,
there is an ellipsis button at the top left, just below the toolbar. This lets you
change the cube, but not the database, context. For example, you may see a cube
to which you have saved data mining content. Or, if you have SSAS Enterprise
Edition, you may see one or more perspectives on a cube.

Underneath you will see the Metadata pane. This shows the measures (or facts)
and dimensions in the cube or perspective. In the Metadata pane there’s a drop-
down for Measure Group that lets you display all measure groups or a specific
measure group. Choosing a specific measure group is quite useful—if you do so,
the dimensions shown in the Metadata pane are only those that relate to that
specific measure group. How dimensions relate to particular measure groups is
determined on the Dimension Usage tab of the SSAS cube designer back in

7 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Business Intelligence Development Studio (BIDS). By showing only one measure
group and its related dimensions, you avoid the possibility of creating a query that
returns meaningless data. For example, in the Adventure Works cube, Resellers are
not related to Internet Sales Amount—if you were to combine the two in a query,
by default, you would end up with repeating data. When you add dimensions to
the query, these are likely to be added to the Row Labels or Column Labels in a
PowerPivot pivot table (they are also eminently suitable for adding to the Report
Filter or Slicers Vertical or Slicers Horizontal). When you add measures, they are
usually placed in the Values or central section of a pivot table.

4. Let’s add some dimensions (strictly speaking, for those of you who are SSAS
veterans, we are going to add some dimension attribute hierarchy members) and
some measures. Expand the Date dimension and then the Calendar folder. Drag
the Date.Calendar Year attribute hierarchy (it’s a blue rectangle, not a blue
triangle/pyramid) into the central body of the query—you will see a caption, Drag
Levels or Measures Here to Add to the Query. Incidentally, a level is part of a
dimension attribute hierarchy (also part of a dimension user hierarchy).

Figure 3-13 Connect to Microsoft SQL Server Analysis Services dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 7 7

Figure 3-14 Specify a MDX Query dialog

Figure 3-15 MDX graphical query designer

7 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

5. Now, expand the Product dimension and drag the Category attribute hierarchy
just to the right of Calendar Year in the central section. Expand Measures and
then expand the Internet Sales measure group folder. Drag Internet Sales Amount
to the right of Category. The query can now execute (as the MDX is valid), and
you will see years, product categories, and Internet Sales figures. Once again,
expand Measures, if necessary. Expand the Reseller Sales measure group and drag
Reseller Sales Amount to the right of Internet Sales Amount. The query will re-
execute and you should see more year and category combinations—the null values
for Internet Sales Amount are now displayed as you have non-null values for
Reseller Sales Amount. The results are shown in Figure 3-16.

6. This is a good place to try out a calculated measure. You can have calculated
measures as part of your cube design in BIDS—it’s created using MDX.
Alternatively, you can create calculated measures at this stage, again created using
MDX. This is handy when you require an ad-hoc calculation. Or, if you are in a
PowerPivot pivot table, you can create the measure there—then you use DAX,
not MDX. All three methods are valid and all are feasible. You probably need to
try all three! You need to get the right balance between reusability, flexibility, and
performance—and that is going to involve some experimentation. SSAS cube
design is beyond the scope of this book—but you will learn the DAX way in this
book (hopefully!). And in this step, you will see how to create an ad-hoc MDX
calculation. Begin by clicking the Add Calculated Member button on the toolbar;
it’s fourth from the left. This opens the Calculated Member Builder dialog. It’s
entitled Calculated Member rather than Calculated Measure because you can also
create non-measure dimension members. This dialog is shown in Figure 3-17.

Figure 3-16 MDX query results

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 7 9

7. In the Calculated Member Builder dialog, enter Total Sales as the Name and
make sure the Parent Hierarchy is Measures. Expand Measures in the Metadata
pane at the bottom left. Expand the Internet Sales measure group and double-
click Internet Sales Amount. This adds [Measures].[Internet Sales
Amount] to the Expression text box. Type a plus sign (+) after [Measures]
.[Internet Sales Amount]. Expand the Reseller Sales measure group and
double-click Reseller Sales Amount. The MDX formula in the Expression text
box should look like this:

[Measures].[Internet Sales Amount] + [Measures].[Reseller Sales Amount]

8. Click OK to exit the dialog, and your new measure appears in the Calculated
Members pane at the bottom left of the query designer. Drag your new measure
(Total Sales) to the right of Reseller Sales Amount in the central area of the query.
You will have a new column that adds sales together by year by product category.

Figure 3-17 Calculated Member Builder dialog

8 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Well done, you have just written some MDX! The last button on the toolbar is for
Design mode. Clicking this button toggles you between graphical mode and text
mode where you can see the MDX. Please note that switching modes and making
changes will overwrite changes made in the other mode. The MDX generated is
perhaps overkill, so if you are new to MDX, don’t be intimidated by the syntax.
Click OK to exit the designer.

9. You are now back again in the Specify a MDX Query dialog of the Table Import
Wizard. Here you can give your query a friendly name—this will be the name
of the PowerPivot table. Click Validate to confirm that your syntax is valid, then
click Finish, followed by Close. Your PowerPivot table is showing a subset of
the cube data. You have converted multidimensional data into a flat, relational
format. If you place this table into a PowerPivot pivot table in Excel, you are
converting it back again into multidimensional data! We are going to extract
the two dimensions and the measures out of the table as separate dimensions
and measures. This raises a very important conceptual point. You are effectively
creating a subset of an SSAS cube; you are creating a data mart from a data
warehouse. By extracting from a few data marts (that is, PowerPivot tables from
a cube), you can reassemble the marts into a new richer model in a PowerPivot
pivot table in Excel. You are free to create your own BI, for you and your team,
outside of the constraints of a predefined SSAS cube. Further, you can combine
these data marts with data imported from relational sources—you can create your
very own BI model, which may well be different from your corporate SSAS cube.
This is the real beauty of PowerPivot—and this is why it’s often called self-service
BI, or personal BI, or instant BI. You have complete control and total flexibility,
without having to understand star schemas and SSAS cube design. That said,
there still remains a vital role for a centralized, enterprise-wide SSAS cube. Most
organizations need both “traditional” SSAS cube BI and PowerPivot “self-service”
BI. Before attempting the next step, you may want to right-click or double-click
on the column headers in the PowerPivot table and give each column a friendlier
name. Please note that the order of the columns may be different from your
query—this is not at all important, as you can add them in any order you want to
a pivot table.

10. On the Home ribbon in PowerPivot, click PivotTable in the Reports group and
choose PivotTable from the drop-down menu. In the Create PivotTable dialog,
accept the default of New Worksheet and click OK. The Create PivotTable dialog
is shown in Figure 3-18. You are switched into an Excel worksheet, with an empty
pivot table to the left and a PowerPivot Field List to the right.

11. In the PowerPivot Field List, drag the year to the Column Labels drop-zone.
Drag the category to the Row Labels drop-zone. In turn, drag Internet Sales
Amount, Reseller Sales Amount, and Total Sales to the Values drop-zone. Note
the numbers appearing in the pivot table and the aggregate functions shown in
the Values drop-zone. Are you wondering why all three aggregations are Count?
Right-click each entry in the Values drop-zone, and from the context menu,

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 8 1

choose Summarize By, then Sum. If you look at the pivot table, you will see that
this has caused an error—the error message is telling you that you can’t perform
a Sum aggregation on string values. Often, PowerPivot will automatically convert
data types for you. This is one occasion where it doesn’t. Measures imported from
cubes are always given a data type of Text, despite the data type of the measure
in the cube design. If you understand BIDS, and you know how to “undeploy” or
reverse-engineer the Adventure Works cube, you will see that the DataType for
Internet Sales Amount and Reseller Sales Amount is Currency. SSAS data types
are not fixed—you can override a sales amount with a string by using an MDX
calculated member or the Scope statement in an MDX script. In essence, the data
type is really Variant. PowerPivot has to play safe because this release does not
support the Variant data type, and it imports SSAS cube measures as Text. This
invalidates the measure for a Sum aggregation.

12. There are two ways to deal with this data type problem. One, you can use the
DAX function VALUE(). Two, you can permanently reset the data type in
PowerPivot. Here we adopt the second approach. Switch to PowerPivot and select
the three measures columns. You can do this by using the shift key with the
mouse, or work on each column individually. From the Formatting group on the
Home ribbon, choose Currency from the drop-down next to Data Type.

13. If you now switch back to Excel, there is a message at the top of the PowerPivot
Field List. It informs you that the PowerPivot data has changed. Click the
Refresh button next to the message. The measures should display correctly in
the pivot table. If you scroll across, the totals for Internet Sales Amount, Reseller
Sales Amount, and Total Sales are 29,358,677.22 and 80,450,596.98 and
109,809,274.20. The final resulting pivot table is shown in Figure 3-19.

That is very clever functionality. You could, of course, have connected a “normal”
Excel pivot table directly to the SSAS cube (you can connect to only one cube at a
time) without using PowerPivot at all. However, that is really not the point. To reiterate,
if you use PowerPivot, you can combine multidimensional data from multiple SSAS
cubes with data from relational sources or even from text files. You are no longer solely
dependent on your SSAS developers and a single SSAS cube for your BI.

Figure 3-18 Create PivotTable dialog

8 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

You can even import data into PowerPivot from PowerPivot. However, the
PowerPivot source must be PowerPivot for SharePoint, not PowerPivot for Excel.
PowerPivot for SharePoint is not free, unlike PowerPivot for Excel. You will need
SharePoint Server 2010, with Excel Services enabled, on a 64-bit machine with SQL
Server Analysis Services 2008 R2 installed in SharePoint integrated mode (the latter
is effectively PowerPivot for SharePoint). PowerPivot for SharePoint is not within the
scope of this book. But, if you do have it, you can import data into your PowerPivot for
Excel. To do so, you specify a URL to your PowerPivot for SharePoint workbook—
rather than the server and database name that we tried for an SSAS connection. If you
need to establish the URL of an object in SharePoint, you can refer to its properties.

If you want to know a little more about writing MDX queries, please refer to
Appendix B or to my book Practical MDX Queries for Microsoft SQL Server Analysis
Services 2008 (McGraw-Hill/Professional, 2010). MDX queries extract data from
SSAS cubes. SSAS also supports data mining models (a vital part of many BI
solutions). To extract data from data mining models (either as Cases or Content or
Prediction queries), you use DMX queries. This release of PowerPivot supports SQL

Figure 3-19 PowerPivot pivot table using SSAS cube data

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 8 3

and MDX but not DMX. In order to add SSAS data mining model data to your
PowerPivot tables, you can embed the DMX within SQL. Appendix C shows how to
write a few DMX queries and embed them inside SQL. If you want to learn DMX,
please refer to my book Practical DMX Queries for Microsoft SQL Server Analysis Services
2008 (McGraw-Hill/Professional, 2010).

From Report
The next item in the Get External Data group of the PowerPivot Home ribbon is
From Report. If you click this, the Connect to a Microsoft SQL Server Reporting
Services Report dialog opens, as shown in Figure 3-20. In this dialog, you have to enter
a Report Path. To do so, click the Browse button to see the Open Report dialog. In the
Name text box of this dialog, type the path to your Report Server or select a recently
visited site. If SSRS is running in native mode, this is likely to be in the form of
http://servername/reportserver. In SharePoint integrated mode, this is likely to be
http://servername/<document library>. However, if SSRS is in native mode and you
have SharePoint too, you might need to include the port number in the URL—it

Figure 3-20 Connect to a Microsoft SQL Server Reporting Services Report dialog

8 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

is likely not to be the default of 80, which, by default, is reserved by SharePoint.
Click Open—this will return a list of deployed SSRS reports from which to select a
report—and then click Open again. If you are successful, your report will open in the
small report viewer in the Connect to a Microsoft SQL Server Reporting Services
Report dialog—this is where you can enter parameter values for parameterized reports.
You can then complete the import of the report data into PowerPivot. There are a
couple of provisos. One, the report must contain data that fits into the table format of
PowerPivot. Two, the SSRS Report Server must be SQL Server Reporting Services
2008 R2—this will not work with SSRS 2008 (that’s the release before 2008 R2)—but
you can use SSRS 2008 reports that have subsequently been deployed to SSRS 2008
R2. If you do have SSRS 2008 R2, you can also export a report to PowerPivot from the
Report Manager toolbar. This will automatically open Excel, let you choose an existing
workbook or create a new workbook, and launch the PowerPivot Table Import Wizard.
If you do have SSRS 2008 R2, you might like to create a report in BIDS or Report
Builder 3, deploy the report, and try to import its data into PowerPivot.

From Data Feeds
A data feed provides live, streaming data from the Internet or from an intranet or
extranet. If you import data into a PowerPivot table from a data feed (and remember to
refresh the data often), your pivot tables will contain pretty dynamic data. Traditionally,
BI provided fairly static and historic data. PowerPivot BI can be almost real time (I
have seen this referred to as “real-enough time”). The data feed you connect to must be
ATOM-compatible; RSS feeds are not supported in PowerPivot. You can even configure
SSRS 2008 R2 reports to be ATOM-compatible and import them as data feeds. Here
are a couple of steps, if you want to try importing into PowerPivot from a data feed:

1. Click From Data Feeds in the Get External Data group of the PowerPivot Home
ribbon. This opens the Connect to a Data Feed dialog, which is shown in
Figure 3-21. In this dialog, enter your Data Feed URL or the URL of a service
document (.atomsvc) that lists data feeds, then click the Test Connection button,
then click OK. PowerPivot remembers recently visited URLs, which makes
selection easy. If you don’t know a data feed URL, try http://services.odata.org/
Northwind/Northwind.svc/—URLs can change, so this may not work by the
time you read this book. I’m hoping it does, because it’s a really good one—it’s the
Northwind database as a data feed.

2. If the connection is successful, click Next to see the Select Tables and Views
dialog. Choose your source tables and, optionally, click Preview & Filter to filter
the data. Filtering data feeds only allows the suppression of entire columns and
not of individual rows. After choosing tables/views and maybe setting a filter,
click Finish followed by Close. Your data should be in one or more PowerPivot
tables, depending on how many tables/views were selected.

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 8 5

From Text
Use this option to import data from text or flat files. When you click From Text, it
opens the Connect to Flat File dialog of the Table Import Wizard. The dialog is shown
in Figure 3-22. You’ll need to check that the Column Separator setting is correct and
decide if the first row of your text file contains column headers or not. If you get these
wrong, the file data will not display correctly in the dialog, in which case, you need
to change them. There’s a Browse button that allows you to locate your file, which
will appear in the File Path field; the data from the file will be displayed in the lower
section of the dialog. Once the data is shown, you can use the check boxes in the
column headers to remove columns. Each column header also contains a small drop-
down button. Use this to filter and/or sort the data to import. PowerPivot does its best
to determine the correct data type for each column—you can assist PowerPivot by
providing a schema.ini file. The filtering options may change from column to column
as a result. For example, you may see an option for Text Filters or for Number Filters.

Figure 3-21 Connect to a Data Feed dialog

8 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

You can ascertain (and change) the data type of each column later with the Data Type
drop-down in the Formatting group of the Home ribbon. You can also retrospectively
change or remove any filters and/or sorts you choose at this stage from the Sort and
Filter group of the Home ribbon, from the Table Properties button on the Design ribbon,
or by using the drop-downs in the column headers in the resulting PowerPivot table.
Filtering retrospectively does not affect the data stored in the PowerPivot model; it affects
the display of data only. When you are done, click Finish, followed by Close.

If you would like to experiment with a text file import, find a suitable file. If you
don’t have a suitable file, here are a couple of suggestions (your own database software
may well have an easier option for exporting to a text file). One, you can copy and paste
from an existing PowerPivot table (perhaps originally imported from Access or Excel
or SQL Server) into a text editor. Two, if you have SQL Server Integration Services
(SSIS), you can load data into a text file from another source. Following are some hints
on how to get both of these working.

Figure 3-22 Connect to Flat File dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 8 7

To copy and paste, you need to be looking at an existing PowerPivot table with the
focus within the table. Press ctrl-a to select the whole table, then click Copy in the
Clipboard group of the Home ribbon. Open a text editor, such as Notepad, and paste in
your data. Save and close the new text file. You can now use this as the import file for
PowerPivot. Depending upon your text editor, you might have to change the Column
Separator from Comma (,) to Tab (t).

To create a text file using SSIS, you need a new Integration Services Project in BIDS.
Add a Data Flow Task to the Control Flow and then go to the Data Flow tab. Add a
suitable source, such as OLE DB Source or Excel Source, and point it to your source
data for the new text file—for example, you could use the Customers table in either
a SQL Server or Access Northwind database. Add a Flat File Destination and drag
the green data pipeline from the source to the destination. Double-click the Flat File
Destination to configure it. You’ll need a new Flat File connection manager. It’s easier
if you accept Delimited as the text file format; you’ll also need to specify a file name for
the new text file and decide whether the first row is going to contain column headers.
When you’ve finished configuring your SSIS package, execute it to create a new text
file. Then, you can use this as a data import source for PowerPivot.

From Other Sources
We are at the penultimate button in the Get External Data group of the PowerPivot
Home ribbon. The From Other Sources button offers you a list of possible data sources
for your PowerPivot tables. The list includes all of the options discussed earlier, even
though the captions may be slightly different (Microsoft SQL Server, for example, is
the same as SQL Server). The list is shown in Figure 3-23 and in Figure 3-24. Here
we’ll take a brief look at only those ones that are new—so Microsoft SQL Server and
a couple of others won’t be covered again. The list of import options is divided into
sections. In the Relational Databases section (Figure 3-23) are Microsoft SQL Server,
Microsoft SQL Azure, Microsoft SQL Server Parallel Data Warehouse, Microsoft
Access, Oracle, Teradata, Sybase, Informix, IBM DB2, and Others (OLEDB/ODBC).
In general, apart from the last one, they require a server name and login credentials.
In addition, some require a database name. The last one, Others (OLEDB/ODBC),
requires that you write your own connection string, if you don’t have an existing DSN
(data source name) file. PowerPivot will try, and often succeed, to display a list of tables
from the connection—if it does, you can also write T-SQL queries against the source.
Alternatively, you can write your own queries, using the default query language of the
source. You may or may not have all of these data sources—it’s a very comprehensive
list! In addition, you may or may not have the necessary data providers required to
connect to these sources. A couple of these data sources might be new to you. For
example, SQL Azure is the great big SQL Server in the sky—it’s a relational data

8 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

source for those involved in cloud-based computing. Microsoft SQL Server Parallel
Data Warehouse became available with Microsoft SQL Server 2008 R2. It’s a massively
parallel processing (MPP) implementation of SQL Server and is based on a hub-and-
spoke architecture. In essence, Microsoft SQL Server Parallel Data Warehouse divides
very large database tables across multiple servers so that load balancing and multiserver
parallelism are possible.

Figure 3-23 Connect to a Data Source dialog 1/2

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 8 9

There is also a Text Files section (Figure 3-24). It’s in this section that you will find
Excel. The previous chapter has step-by-step instructions and a practical on how to
import from Excel, in case you jumped into the book at this point. If you are interested
in how to import data from Excel worksheets into PowerPivot, refer back to the last
chapter. Importing from Excel has one major difference from importing from relational
sources—you have to create the relationships between tables manually. Again, there
is a step-by-step example on this subject in Chapter 2. Later in this chapter, we take
another look at relationships.

Refresh
The final button in the Get External Data group of the Home ribbon is labeled
Refresh (there is also a Refresh option available through the Existing Connections
button on the Design ribbon). Clicking this button opens a small drop-down menu that

Figure 3-24 Connect to a Data Source dialog 2/2

9 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

offers two choices: Refresh and Refresh All. The menu is shown in Figure 3-25. Both
of these are of fundamental importance. When you import data into a PowerPivot table,
you are creating a separate and independent copy of the original data (unless you use an
Excel linked table). If the source data changes, the copy in PowerPivot is not updated,
and it’s likely that over time your source data and your PowerPivot data will get out of
sync. If you click Refresh | Refresh, then the current table is re-imported and brought
up-to-date. If you click Refresh | Refresh All, then all of your PowerPivot tables are
re-imported and updated. PowerPivot is not a real-time system, and your pivot reports
(tables and charts) can easily become stale if you don’t use Refresh on a regular basis.
Please note that the Refresh button is disabled until you import data into one or more
PowerPivot tables (pasted data and linked tables alone do not enable the button).

Reports Group
The Reports group has a single button called PivotTable. It duplicates the functionality
of the PivotTable button in the Report group of the PowerPivot ribbon in Excel. This is
the button to use to create a pivot report on your PowerPivot tables back in Excel. You
can insert a new pivot table (normal and flattened) or a pivot chart. There are additional
choices to insert a pivot table and a pivot chart or two or more pivot charts. All of the
choices are shown in Figure 3-26. When you insert more than one report, you can
customize them differently if you wish. Working with pivot tables and pivot charts is
covered in detail in Chapter 5.

Figure 3-25 Refresh drop-down menu

Figure 3-26 PivotTable drop-down menu

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 9 1

Formatting Group
The first option in the Formatting group is for checking and/or setting the Data Type
of the current column in a PowerPivot table. For example, if you import a measure
from an SSAS cube, its data type will be Text. You may want to reset this to a more
appropriate type like Currency or Whole Number. If you get the data type right, it will
display correctly in a pivot table and your DAX functions will operate successfully. It’s
not always strictly necessary to get the right data type for DAX functions—PowerPivot
will often implicitly convert a column into a more appropriate data type. For example,
if you have two numbers as data type Text and you attempt to add or sum them, DAX
will automatically convert them into Decimal Number or Whole Number. However,
you should be aware that this automatic implicit data conversion does not always take
place. This is particularly true when the data originates in an SSAS cube. Therefore, it’s
probably good practice to check and explicitly set, if necessary, the data type for every
column in every table. When you set the Data Type, you are changing how PowerPivot
stores the data. The choices are shown in Figure 3-27.

The data types available are Text, Decimal Number, Whole Number, Currency, Date,
and TRUE/FALSE. TRUE/FALSE is often referred to as a Boolean and corresponds
to the data type of bit in SQL Server. The Date data type is of fundamental importance.
Quite a few DAX functions are time or time intelligence functions—many of these
require a column to be of data type Date and it’s possibly better not to rely on automatic
data type conversion.

The next button in the Formatting group is labeled Format. The Format options affect
how the data is viewed in a pivot table—although a pivot table itself has its own formatting
options, it’s a good idea to get the formatting right at the PowerPivot stage. The format
options available are dictated by the data type of the column. Only the Text format is
available for a Text data type column and only TRUE/FALSE for a TRUE/FALSE
data type. A data type of Date results in a wide range of date formats. A data type of
Currency, Decimal Number, or Whole Number gives you a choice of General, Decimal
Number, Whole Number, Currency, Accounting, Percentage, and Scientific formats.

Figure 3-27 Data Type drop-down menu

9 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Hopefully, these are largely self-explanatory. The Accounting format displays negative
figures in parentheses. The Scientific format displays figures in exponential format.
When you set the Format, you are not changing how PowerPivot stores the data—it
changes the display only.

Underneath the Format drop-down are five small buttons without captions. If you
hover the mouse over each button in turn, however, you can see the tooltips: Apply
Currency Format, Apply Percentage Format, Thousands Separator, Decrease Decimal,
and Increase Decimal. You can use these to extend your choice in the Format drop-
down—but in some cases, they will change your Format choice. The first button, Apply
Currency Format, has a drop-down menu. This menu is shown in Figure 3-28. From
the menu, you can easily apply some standard currency formats or choose the last
entry—More Formats. More Formats opens the Currency Format dialog with another
drop-down for Symbol. This gives a pretty formidable list of currency symbols—after
my default currency symbol, my list starts with the Dari (Afghanistan) symbol and ends
with the Divehi (Maldives) symbol—they are not in any kind of alphabetical order.

Sort and Filter Group
In the Sort and Filter group are four buttons. The first is labeled Sort A to Z or Sort
Smallest to Largest, depending on the data type of the currently selected table column.
The second is Sort Z to A, or Sort Largest to Smallest. The third button, Clear Sort,
removes any sorting you have implemented. Finally, the fourth button, Clear All Filters,
removes any filtering you have implemented. This last button is interesting, as there
is nothing in the group to apply filtering in the first place! You can apply filtering in
three different places in PowerPivot, and you can also apply filters to pivot reports in
Excel. Clear All Filters removes PowerPivot filtering but not pivot table filtering. In
PowerPivot, you can set up filters during the Table Import Wizard. Or you might use
the Table Properties button in the Properties group of the PowerPivot Design ribbon.
Alternatively, each column in a PowerPivot table has a small drop-down menu where
you can filter (and sort too). This drop-down also has an option that will have a caption
such as Date Filters or Number Filters or Text Filters—this enables you to impose
complex and customized filtering. Clear Sort and Clear All Filters also undo these.

Figure 3-28 Apply Currency Format drop-down menu

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 9 3

View Group
The final group on the Home ribbon is the View group. Here there are two buttons:
Freeze and Column Width. Freeze is handy when you scroll to the right of a table with
many columns and have a column or columns that identify each row, such as a customer
name. The columns you freeze are moved to the left and remain in view as you scroll—
if you later unfreeze, the columns stay at the left. Before you click Freeze | Freeze,
make sure you are in the correct column, or for multiple columns, make sure they are all
selected. To select multiple columns, they must be adjacent: Hold down the shift key
after you have clicked in the first column and before you click on the last column (or
drag with the mouse). In this release of PowerPivot, the ctrl key does not work, so you
can’t select non-adjacent columns to freeze. Once a column is frozen, you can undo the
freeze by clicking Freeze | Unfreeze or by clicking Undo in the Edit group of the Design
ribbon. The Column Width button opens the Column Width dialog, where you can resize
a column (the width is expressed in pixels)—you can also accomplish this by dragging
column dividers or by double-clicking dividers. The dialog is shown in Figure 3-29.

That concludes our tour of the PowerPivot Home ribbon. The next ribbon is the
Design ribbon.

Design Ribbon in PowerPivot
To display the Design ribbon in PowerPivot, click the Design tab. If the ribbon opens
over the top of your PowerPivot table and obscures the first couple of rows, double-
click rather than single-click the Design tab. The Design ribbon contains the following
groups: Columns, Calculations, Connections, Relationships, Properties, and Edit. Once
again, let’s work through these in sequence from left to right. The Design ribbon is
shown in Figure 3-30.

Columns Group
In the Columns group there are three buttons: Hide and Unhide, Add, and Delete.
There is a fundamental difference between hiding and deleting columns. If you delete

Figure 3-29 Column Width dialog

9 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

a column, you have lost it from PowerPivot and subsequently from any pivot report
based on PowerPivot. You can’t undelete by using the Undo button in the Edit group.
However, you can add the column back by going through the Table Properties button
in the Properties group and turning on the column’s check box. Note that if you do this,
the column gets added at the end of the table and not in its original position. If you
imported from a table rather than writing a SQL query, this is another way to rearrange
your columns. However, it’s probably much easier to drag columns around in the table
to change the order. Hiding a column merely removes the column from the display (in
PowerPivot and/or in a pivot table based on the PowerPivot table). Hiding a column
does not delete the column. Hidden columns can be referenced in DAX functions and
formulas—deleted columns can’t be used.

The Hide and Unhide button leads to the Hide and Unhide Columns dialog, which
is shown in Figure 3-31. Here you can hide a column in PowerPivot and/or a pivot
table back in Excel. If you have columns that are used in DAX calculated columns,

Figure 3-30 Design ribbon in PowerPivot

Figure 3-31 Hide and Unhide Columns dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 9 5

it’s possible you only want the PowerPivot Field List for the pivot table to show the
final resulting column and not the original. This is especially useful if the column is a
non-additive measure, such as price, that is only used to multiply by quantity to give
a fully additive measure of the sales amount. To reshow a hidden column, click Hide
and Unhide again or use the Undo button in the Edit group—the latter option is not
available for long. If you close the PowerPivot window and reopen it, the Undo button
is disabled. Clicking Add jumps you to a new column at the right-hand side of the
table and activates the formula bar so you can enter a DAX formula. Alternatively, you
can scroll to the far right to see a new column with a header of Add Column—if you
click in this column, it also activates the formula bar. Clicking Add saves a scroll! The
Delete button, as you might expect, deletes a column from a PowerPivot table. You can
undelete by clicking the Table Properties button in the Properties group.

Calculations Group
There is just the one button, Calculation Options, in the Calculations group. The button
has three options in its drop-down menu: Calculate Now (F9), Automatic Calculation
Mode, and Manual Calculation Mode. This drop-down is shown in Figure 3-32. Your
choice is between automatic and manual calculation mode. Automatic calculation mode
is the default. If you change to manual calculation mode, you can then use Calculate
Now (f) or press the f key to force a calculation. If you are in manual mode, any
changes to a calculated column result in the column being grayed-out and a “Calculation
required” smart tag being displayed.

The calculation refers to one or more DAX calculated columns. A DAX calculated
column is a new column that you add to a table and into which you enter a DAX
formula consisting of one or more DAX expressions containing functions, operators,
and literals. After you enter a DAX formula in the formula bar and press enter, the
DAX formula evaluates for every single row in the table and the results are materialized.
When you need to create many calculated columns with complex DAX formulas on
many tables with millions of rows, this continual evaluation or calculation for every
single calculated column at a time can interrupt your work for a few moments. You can
postpone the calculations until you are ready by switching from Automatic Calculation
Mode to Manual Calculation Mode. If you do so, remember to click Calculate Now
(f) or press the f key after you have finished the last formula.

Figure 3-32 Calculation Options drop-down menu

9 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Connections Group
Every single time you import data using the Get External Data group on the Home
ribbon, you create a new connection. The sole Existing Connections button in the
Connections group shows you all of these connections in the Existing Connections
dialog, which is shown in Figure 3-33. This leads to a number of interesting
possibilities. One, you can change the connection by clicking Edit. Two, you can use an
existing Office Data Connection (.odc) file that was created previously by some other
Excel/Office operation. Three, you can browse for other connection files by clicking
Browse for More. Four, you can add tables or queries to an existing connection by
clicking Open or double-clicking the connection.

The last point is worthy of more discussion. Often, you will use Get External Data
and import a few tables from a particular source. Later, you may decide that you want
another table from the same source. If you go back through Get External, you are
creating a new connection to the same source. You can end up with many connections

Figure 3-33 Existing Connections dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 9 7

to the same data source. If you go through Existing Connections and click Open, you
can add new tables or queries to an existing connection. Having a single connection to a
single source is much, much more efficient than having multiple connections to a single
source. It also simplifies management of PowerPivot for Excel workbooks published to
PowerPivot for SharePoint. If you do go for a single connection, you may see significant
improvements in the speed of data import, especially if you re-import by clicking
Refresh All from the Refresh button on the Home ribbon.

Relationships Group
There are two buttons in the Relationships group of the Design ribbon: Create
Relationship and Manage Relationships. Create Relationship, naturally, is used to
create relationships. Manage Relationships is used to edit or delete existing relationships.
However, the Manage Relationships dialog also includes a Create button so that you
can set up new relationships without having to go back to the Create Relationship
button. If you are importing from a relational source that supports relationships, and
relationships are defined in the source, PowerPivot might automatically create the
relevant relationships for you—but this may not be so for arbitrary OLEDB/ODBC
connections. If, however, you import from a non-relational source such as Excel or text
files, you may want to define relationships. This has a number of benefits. It means
you can use the important DAX functions RELATED() and RELATEDTABLE(). In
addition, it helps you to have the correct data from multiple tables display correctly
in a PowerPivot pivot report. The Create Relationship dialog is shown in Figure 3-34.
The Manage Relationships dialog is shown in Figure 3-35.

Figure 3-34 Create Relationship dialog

9 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you import PowerPivot tables from disparate sources, then PowerPivot can’t create
the relationships automatically. This is also true when you import new tables on an
existing connection—relationships with existing tables are not detected. If tables are
related in some way, it’s important that you tell PowerPivot. When you add tables to
a pivot table, you could always try the Detection button in the Relationship group of
the PowerPivot ribbon in Excel. But it’s a good idea to explicitly and manually create
relationships. If you omit them or the automatic detection algorithm gets it wrong, your
pivot table may display inaccurate results.

Our Excel import example in Chapter 2 demonstrated how to set up relationships.
If you skipped that chapter or the Excel part, it might be a good idea to refer back to it
quickly. As a reminder, if you read Chapter 2, in PowerPivot relationships, in one-to-
many relationships, the relationships go from the many to the one. If you have Access or
SQL Server experience, you may be used to the relationship going from the one-side
table to the many-side table—you will have to readjust your way of thinking. If you
have SSAS experience, you are already used to relationships working this way around. If
you get it wrong, PowerPivot will automatically reverse the relationship.

In this chapter, rather than repeating a step-by-step example from the last chapter, it
might be a good idea to consider a more advanced relationship. A really great feature of
PowerPivot is the ability to create relationships between tables from different sources.
And this includes the ability to relate a table from a relational source to a table from
a multidimensional source, such as an SSAS cube. This is truly personal BI! Here’s a
step-by-step example to relate relational data to multidimensional data (if you wish to

Figure 3-35 Manage Relationships dialog

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 9 9

click along rather than just read, you will need the SSAS Adventure Works database
and cube and some familiarity with BIDS, in order to prepare a suitable dimension as a
multidimensional source—and the SQL Server AdventureWorksDW2008 database as
a relational source):

1. Reverse-engineer your SSAS Adventure Works database through File | New |
Project | Import Analysis Services 2008 Database. You could, alternatively,
open your Adventure Works SSAS solution. If you do so, please be careful. We
are going to make changes to a dimension, so when you deploy, make sure you
change the project name and the database name (right-click Project | Properties |
Deployment | Target | Database). If you don’t do this, you will overwrite the
SSAS Adventure Works (assuming you have it)—and we are going to totally mess
up a dimension, by way of illustration!

2. Open the Customer dimension (Customer.dim) from Solution Explorer. You
should be in the Dimension Structure tab of the dimension designer. Remove
the Country attribute hierarchy from the Attributes pane (right-click, then click
Delete)—this also removes the Country level from the Customer Geography user
hierarchy in the Hierarchies pane. We are going to relate this multidimensional
database/cube dimension to a relational source to replace the deleted country
attribute.

3. Drag the Geography Key attribute from the Customer (not from Geography)
source in the Data Source View pane on the right into the Attributes pane at the
left. Deploy and process the database with the changed dimension. To do this,
right-click on the project, and choose Deploy. Remember your project/database
name.

4. Go to PowerPivot, and from Get External Data choose From Database, From
Analysis Services, or PowerPivot. Connect to your SSAS server and your new
SSAS database. Click Next followed by Design to open the graphical query
designer.

5. In the graphical query designer, expand the customer dimension and drag in
the Geography Key attribute hierarchy (a blue rectangle) and the Customer
Geography user hierarchy (a blue pyramid/triangle). Expand Measures and Internet
Sales, and then drag in Internet Sales Amount to see data returned from the cube.
Click OK, Finish, and Close. The query designer is shown in Figure 3-36.

6. Internet Sales Amount is a measure in the cube with a DataType property of
Currency. You can verify this by selecting Internet Sales Amount in the Measures
pane of the Cube Structure tab in the cube designer and looking at the Properties
window. In PowerPivot it has a data type of Text. You can verify this by looking
at the Data Type drop-down on the PowerPivot Home ribbon. Change the data
type in PowerPivot to Currency. PowerPivot, to play it safe, always imports cube
measures as Text.

1 0 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

7. From the Get External Data group on the Home ribbon, choose From
Database, and then choose From SQL Server. Connect to your SQL Server
AdventureWorksDW2008 database and click Next twice. Select DimGeography
as the source table, and then click Finish, then Close.

8. Now, for the core of this step-by-step example. Click Create Relationship on the
Design ribbon. Remember that relationships go from the many to the one. The
first (many) table is the table from SSAS. The second (one) table is the table from
SQL Server (DimGeography). The key relating the tables is GeographyKey. Set
up the relationship and click Create.

9. Make sure you are looking at the first table (the one from SSAS) in PowerPivot.
Click Add on the Design ribbon. This activates the formula bar. Enter the
following DAX formula and press enter:

=RELATED(DimGeography[EnglishCountryRegionName])

10. Rename the new column Country and verify that it shows the correct country for
each row. You can check the country against the state-province column—you may
have to scroll a long way down to get beyond California and the United States!
The result is shown (with a frozen column and renamed columns) in Figure 3-37.

11. From the Home ribbon, click PivotTable, PivotTable, then OK. Back in Excel, use
the PowerPivot Field List and drag the new calculated country column and then

Figure 3-36 MDX graphical query designer

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 1 0 1

the city column from the first SSAS-based table into the Row Labels drop-zone.
Drag the measure for Internet Sales Amount from the same table into the Values
drop-zone and check that the aggregate function (Summarize By on the context
menu) is Sum. The Field List is shown in Figure 3-38.

12. Right-click on Australia in the pivot table and choose Expand/Collapse |
Collapse Entire Field. Expand Germany following the same procedure. The first
city should be Berlin with sales of 260,930 (ignoring cents or pence), and total
sales for all cities in all countries in the Grand Total row should be 29,358,677
(again ignoring cents or pence).

Wow! Well done, if it worked. That is really cool self-service BI. My result is shown
in Figure 3-39.

Properties Group
The Properties group has only one button, with the caption Table Properties. Clicking
this button opens the Edit Table Properties dialog, which is shown in Figure 3-40.
There is quite a lot going on here, and the options vary according to the nature of the
source table. For example, if your source is SQL Server, you can change the source table

Figure 3-37 SSAS data in PowerPivot with a DAX calculated column

1 0 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

for the PowerPivot table—but you can’t change the source database. The source table is
the Source Name property. The column headers displayed can be from either the source
itself or from PowerPivot—this makes a lot of sense if you have renamed the columns
in PowerPivot. At the bottom right of the dialog, you can see when you last refreshed
(synched or synchronized) the PowerPivot data from the source data. If you have any
filters on the table, clicking Clear Row Filters will remove all filters. Note that this will not
remove any sorts. To remove sorts, use Clear Sort from the small drop-down in the column
headers. To change, add, or delete individual filters, you also use the small drop-down in
the column hearers.

Figure 3-38 PowerPivot Field List

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 1 0 3

Figure 3-39 PowerPivot pivot table

Figure 3-40 Edit Table Properties dialog

1 0 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

By default, you are in Table Preview mode. You can use the Switch To drop-down
to toggle between Table Preview and Query Editor, provided you imported the table
as a table rather than as a hand-crafted query. If the source data is an SSAS cube, you
only have Query Editor—but there you can preview the table. Query Editor shows
the syntax (for example, a SQL or MDX Select statement) that retrieves the data for
the table. The Query Editor view has a Design button that results in a graphical query
designer, from the Table Import Wizard, for your SQL or MDX. If you are using SQL
rather than MDX, you will need to click Edit as Text to enable the graphical designer.
Once in the graphical designer, you can use point-and-click and drag-and-drop to alter
your initial table/query. Both SQL and MDX graphical query design were covered
earlier in this chapter—if they are relevant to your needs, you may want to quickly
refer back.

Edit Group
The final group of the PowerPivot Design ribbon is the Edit group. This has two drop-
downs labeled Undo and Redo. Please be aware that you can’t undo or redo many of the
changes you make in PowerPivot. Also, the drop-downs are disabled if you close and
reopen the PowerPivot window.

That’s it for the Design ribbon, which is the second ribbon in PowerPivot. You may
or may not have a third, contextual, ribbon called Linked Table. It’s only visible when
you are looking at an Excel linked table in PowerPivot.

Linked Table Ribbon in PowerPivot
 The Linked Table ribbon is not normally visible. It only becomes available when you
have imported an Excel linked table into PowerPivot. There is only one group, Linked
Tables, on the Linked Table ribbon—the ribbon is shown in Figure 3-41.

Figure 3-41 Linked Table ribbon in PowerPivot

C h a p t e r 3 : P o w e r P i v o t : I n - D e p t h 1 0 5

Linked Tables Group
The Linked Tables group includes buttons/drop-downs with the captions Update All,
Update Selected, Excel Table, Go to Excel Table, and Update Mode. The Update Mode
drop-down menu is shown in Figure 3-42. If you choose Manual, you must remember
to click Update All or Update Selected to refresh PowerPivot if the original table in
Excel changes. There is also an Update All button on the PowerPivot ribbon in Excel.
To enable the Linked Table ribbon and these buttons, you first need to create an Excel
linked table in PowerPivot. As a reminder, you do so by using the Create Linked Table
button in the Excel Data group of the PowerPivot ribbon back in the Excel workbook
itself (not the Get External Data group on the PowerPivot Home ribbon). How to do
this was covered earlier in this chapter, in the “Excel Data Group” section, where we
also saw how to use the buttons on the Linked Table ribbon in PowerPivot. If linked
tables are an option for you, you may want to refer back.

That concludes our tour of the PowerPivot ribbons and graphical interface.
The discussion has not covered all of the various possibilities of working—the emphasis
has been on the PowerPivot ribbons and the PowerPivot ribbon in Excel. Quite often,
the same functionality is available from context-sensitive menus accessed by a right-click.
For example, you can freeze or hide a column by a simple right-click on the column
header. The next chapter is an overview of DAX and how it can extend the already massive
capabilities of PowerPivot available through the GUI.

Figure 3-42 Update Mode drop-down menu

This page intentionally left blank

DAX: Overview

Chapter 4

1 0 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Data Analysis eXpressions (DAX) is a new language that makes its debut with
PowerPivot for Excel. It is a language designed to use formulas, which in turn
are based on one or more DAX functions. Some of its functions will look

familiar to veteran Excel users, although there are differences between DAX and Excel
functions. These differences are elaborated in this chapter. You will learn where and
how to write DAX functions and formulas, and there are a number of examples to try.
The all-important concept of filter context is discussed in detail. Other topics include
data types and operator precedence. Two of the most popular functions, RELATED() and
CALCULATE(), are covered in depth. The difference between DAX calculated columns
and DAX measures is explained. Hopefully, there is enough DAX in this overview
chapter to get you started. The second part of this book provides a comprehensive
reference, with examples, of all the DAX functions.

Key concepts What is DAX, where and how to write DAX, row context, filter
context, data types, operator precedence, calculated columns, measures, RELATED()
function, CALCULATE() function

What Is DAX?
In Chapter 1 and Chapter 2, there were very fleeting glimpses of a couple of DAX
formulas. In this chapter, by contrast, there is rather more DAX. In particular, we
examine the reasons for using DAX and take a look at some useful and popular DAX
formulas. A DAX formula is made up of one or more DAX expressions, functions,
operators, column values, table values, and literal values. DAX formulas can be used in
the PowerPivot window and/or in a PowerPivot pivot report (table or chart) visualized
in an Excel worksheet. In general terms, DAX extends PowerPivot to enhance its BI
capabilities. DAX gives you a great deal of control flexibility—you are not limited
by the composition of the source data. For many users, the already considerable
functionality of PowerPivot and pivot tables may be more than enough. For other users,
especially those of you with an interest in BI, DAX will give you almost unlimited
possibilities.

DAX is not the same as SQL or MultiDimensional eXpressions (MDX), nor is
it meant as a replacement for those languages. DAX is a new, dedicated BI language
and is easier than the “traditional” BI query and script language, MDX—a lot of DAX
syntax looks just like those good old familiar Excel formulas. There is a major difference
between Excel functions and DAX functions: Excel functions normally operate on
values in cells and ranges, while DAX functions can operate on columns, and tables, and
measures as well as relationally across multiple tables. DAX is specifically designed for
self-service or team BI. As such, you can use it to concatenate data, parse data, relate
tables, denormalize data, create hierarchical drill-downs in a pivot table, perform time

C h a p t e r 4 : D A X : O v e r v i e w 1 0 9

intelligence (for example, year-to-date sales or year-on-year sales growth), and much,
much more. Many of these functions will be discussed in the course of this chapter.

NOTE
Nearly all of the examples in this chapter use Northwind data. If you want to experiment (and you don’t have the
data yet), as well as read, you can refer to Chapter 1 to see how to import SQL Server Northwind. Chapter 2 shows
how to import Access Northwind or, alternatively, how to import Excel Northwind (available for download from
this book’s Web site), or even how to connect to a Northwind data feed.

Where to Write DAX
DAX formulas can be used to create calculated columns or calculated measures. A
calculated column is defined in the PowerPivot window when you add a new column
to a PowerPivot table. It doesn’t matter which PowerPivot ribbon is current. A measure
is defined in an Excel worksheet containing a pivot table and/or pivot chart based on
PowerPivot tables. In order to create a measure, the focus must be in the pivot report or
in the PowerPivot Field List—for the PowerPivot Field List to display, you must first
have the focus on the pivot report. Then you can use the New Measure button in the
Measures group of the PowerPivot ribbon in Excel. If another ribbon is current, you can
always right-click a table in the field list and choose Add New Measure.

Calculated Columns
To create a calculated column, you must be in the PowerPivot window. As shown earlier
in the book, one way of creating (or adding) a calculated column is to click the Add
button in the Columns group of the Design ribbon. Or you can simply scroll until you see
the first empty column, with the column header Add Column, and click in the column.
You then enter your DAX formula in the formula bar and press enter—the formula bar
lies between the ribbon and the table. If you create or modify a calculated column, and
you already have a pivot table, the PowerPivot Field List will alert you to the fact and
present a Refresh button so the pivot table and field list can be updated with the change.

Context of a Calculated Column
Every row in the table will contain the result of the DAX formula in the calculated
column, even if the result is an error or a blank value. The context of the calculated
column result is at the row level in the table. Calculated columns have row context. The
result of the column for each row is usually fixed, although a refresh of the source data
may result in a change if the source data has changed. Some people refer to calculated
columns as static data.

1 1 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Evaluation and Materialization of a Calculated Column
As soon as you’ve finished the formula and pressed enter, the column result is
evaluated for each row. This is true if you are in the default automatic calculation
mode. If you switch to manual calculation mode, the result is not evaluated until
you press f or choose Calculate Now (as a reminder, this option is available in the
Calculation Options drop-down—Design ribbon, Calculations group). Whether the
evaluation is performed automatically or manually, once the evaluation is complete,
the results are materialized. In other words, the calculated column is now a static part
of your PowerPivot table and looks and behaves just like a normal, imported column.
Calculated columns are often used to extend or manipulate the data you’ve already
imported. Just like regular columns, calculated columns are used as rows, columns,
filters, or slicers in a pivot table. Popular examples of calculated columns include
parsing an existing column, concatenating existing columns, or denormalizing data by
referencing a column in another PowerPivot table.

Where to Use a Calculated Column in a Pivot Table
In the PowerPivot Field List, a calculated column looks just like a normal imported
column. Normally, you add it to any drop-zone, apart from Values. It’s often used to
describe or qualify the data that you do have in Values. It’s also often used to filter
the data that you do have in the Values drop-zone. Consequently, consider adding a
calculated column to Slicers Vertical, Slicers Horizontal, Report Filter, Column Labels,
or Row Labels. You saw examples of this in Chapters 1 and 2, in the Year and Category
calculated columns.

That said, you can add a calculated column to the Values drop-zone, if it’s suitable. A
suitable candidate is a calculated column that can be sensibly aggregated in some way,
for example by a Sum or a Count. Often suitable columns will be numeric—indeed,
they may look like metrics (measures or facts). If you add a calculated column to the
Values drop-zone, PowerPivot implicitly creates a measure, while leaving the original
column unchanged. This works, but it’s often better to create a measure explicitly
yourself, using the New Measure button on the PowerPivot ribbon in Excel. That
gives you so much more control and flexibility. In Chapter 2, you saw examples of both
approaches. If you followed the practicals and still have your workbook, you may want
to take a quick look. We created a calculated column called Sales Amount. This was
added to the Values drop-zone and PowerPivot aggregated it with a Sum—an implicit
measure directly from a calculated column. It got renamed to DAXColumn. There
was also an explicit measure, created with the New Measure button, DAXMeasure.
Incidentally, this too was based on the same calculated column, but its syntax was

C h a p t e r 4 : D A X : O v e r v i e w 1 1 1

much richer, and that is ultimately what gives you more control. In general, it’s
recommended that you create explicit measures rather than have regular or calculated
columns double up as implicit measures. You’ll see explicitly calculated measures shortly
(they are usually simply referred to as measures). If that’s not enough, you can use the
GUI to create implicit measures, as well! In Chapter 2, we created such an implicit
measure, GUIColumn.

For those readers with an SSAS and cube background (and if you don’t have this
background, please feel free to skip this paragraph), a calculated column is an attribute
in a non-measure dimension—it can be used for creating user hierarchies just like an
SSAS attribute hierarchy. The results for every row are its members. As a non-measure
dimension, it would normally be added to Row Labels, for example, and not to the
Values drop-zone in the field list. It would, also, normally not be aggregated. However,
you could add it to the Values drop-zone. If the column is numeric it will, by default,
be summed. If it’s non-numeric, it will normally be counted. When you do add it to
the Values drop-zone, PowerPivot will implicitly create a measure with an appropriate
aggregation function that references the column. This is what happened to the Sales
Amount calculated column (renamed DAXColumn) in Chapter 2.

Referring to Calculated Columns
When you reference a calculated or a regular column in a DAX formula, you must
include the column name inside square brackets, for example, [Year]. If you are
creating a calculated column based on a calculated or regular column in another
table, the referenced column must be prefaced with the table name, for example,
Orders[Year] or 'Orders'[Year]. The single quotes around the table name
are optional, unless there is a space or special character in the table name. Calculated
column names must be unique within a table, but you can use the same name for a
column within different tables. If you do so, the column name will be given a suffix in
the GUI.

Examples of Calculated Columns
These examples are reproduced (with one addition) from Chapter 2:

='Order Details'[Quantity] * 'Order Details'[UnitPrice]

=[Quantity] * [UnitPrice]

=YEAR('Orders'[OrderDate])

=YEAR(Orders[OrderDate])

=YEAR([OrderDate])

=RELATED('Categories'[CategoryName])

1 1 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The fourth example is an addition to the formulas reproduced from Chapter 2.
The first and second examples are equivalent. The third, fourth, and fifth examples are
equivalent. Most DAX functions can appear in calculated column or measure formulas.
However, as RELATED() requires a row context, it is most often used for a calculated
column or as an input to another DAX function. RELATED(), an extremely useful
function, is covered in more detail shortly.

Measures
To create a measure, you must be in the Excel workbook (not the PowerPivot window)
and you must have an existing pivot report with the focus either in the report or its
PowerPivot Field List. You then click the New Measure button on the PowerPivot
ribbon, or right-click a table in the field list and choose Add New Measure. Either
action opens the Measure Settings dialog. In this dialog, you enter your DAX formula
in the Formula text box. When you finish the formula, it’s a good idea to click Check
Formula (to verify your syntax) before clicking OK to exit the dialog.

Context of a Measure
A measure has no context until it’s added to the Values drop-zone. Then its context
is determined by the other attributes in the pivot table. The context of a measure is
given by your choices in Slicers Vertical, Slicers Horizontal, Report Filter, Column
Labels, and Row Labels. As an example, if you select only 1996 from a slicer based on
Year, the values of the measure displayed (that is, a measure that has been added to the
Values drop-zone) are those relevant to 1996 and not any other year or years. This is the
standard behavior of a measure. Its values are governed by the filters you implement in
the pivot table. Measures have f ilter context. As such, the values of a measure in a pivot
table will often change as you slice and filter. Measures are often said to be dynamic.

One of the most powerful aspects of DAX is the ability to alter the filter context at
will. The CALCULATE() function lets you add to or subtract from the existing filter
context. You can change or override the current filters or remove the filters completely.
If you remove the current filters completely, you are effectively turning a dynamic
measure into a static, fixed measure. In the example in the upcoming section “Examples
of Measures,” the function ALL() modifies the CALCULATE() function to remove
any current filter context on the Order Details table. In plain words, this means that
the value in any particular cell is unchanged no matter how you slice, dice, or filter the
date. Sometimes, overriding the filter context (totally or partially) is just what you need.
Sometimes, honoring the current filter is just what you need. Later in this chapter,
you’ll see examples of both. Hopefully, then, it will begin to make sense. The filter
context is one of the more difficult concepts in PowerPivot.

C h a p t e r 4 : D A X : O v e r v i e w 1 1 3

Evaluation and Non-Materialization of a Measure
A measure is not evaluated until it is added to the Values drop-zone. As you add
columns to Column Labels and Row Labels and drill down and drill up, the measure
gets re-evaluated for every single cell in the pivot table individually. If you filter in these
labels, in a Report Filter, and/or in a slicer, re-evaluation will occur. The evaluations
are not stored permanently in a PowerPivot table; they are never materialized. This is
another reason why measures as referred to as dynamic data.

Where to Use a Measure in a Pivot Table
In the PowerPivot Field List, a calculated measure has a small calculator icon to
distinguish it from normal and calculated columns. You can only add the measure to the
Values drop-zone. You can’t, for example, add it to Row Labels or to a slicer. In Chapter 2,
you saw just such a measure: DAXMeasure.

For those readers with an SSAS and cube background (and if you don’t have this
background, please feel free to skip this paragraph), a measure is a member of a measure
group. A measure is always an aggregation, and its value is determined by how you slice
and dice (filter context). A measure in PowerPivot is always a measure. You can’t change
it into a degenerate or fact dimension—that’s why it can only be added to the Values
drop-zone in the field list and not to Column Labels, for example.

Referring to Measures
Measure names, like column names, must be referenced using square brackets, for
example, [DAXMeasure]. You may reference a measure, for instance, when you build a
measure based on another measure. Measures are assigned to a parent table; however, as
measure names must be unique across all tables, it’s not necessary to preface a measure
name with a table name.

Examples of Measures
These examples are reproduced from Chapter 2.

=SUM([Sales Amount])/CALCULATE(SUM([Sales Amount]),ALL('Order Details'))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),ALL('Order Details'))

Both examples are equivalent. There is yet another way of writing these examples—
there is a shortcut that allows you to omit the CALCULATE() function. Although
most DAX functions can be a part of both calculated column and measure formulas,
the CALCULATE() function is normally used for a measure. This is for two reasons.

1 1 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

One, it is often used to return a number or metric of interest. Two, as it is used to
modify the filter context, it is most appropriate in the Values drop-zone as a measure.
CALCULATE() is covered shortly—it’s a very popular function.

How to Write DAX
Whether a calculated column or a measure (in the formula bar in PowerPivot or in the
Measure Settings dialog in the Excel worksheet), you can choose to type everything
in your DAX formula. Or preferably, you will avail yourself of AutoComplete.
AutoComplete not only saves typing, but obviates typos and syntax errors. Here’s a very
simple DAX formula for a calculated column (actually, just a single function that you
met earlier), and this example demonstrates how to take advantage of AutoComplete:

1. The completed formula is:

=YEAR(Orders[OrderDate])

2. First, activate the formula bar by adding a new column to the Orders PowerPivot
table. You have two choices to start the formula. Either type an equal sign (=) or
use the small function button immediately to the left of the typing area in the
formula bar. The latter opens the Insert Function dialog, which is shown in Figure
4-1. From the Select a Category drop-down, choose Date & Time. From the
Select a Function drop-down, choose Year and click OK. This method enters an

Figure 4-1 Insert Function dialog

C h a p t e r 4 : D A X : O v e r v i e w 1 1 5

equal sign for you, followed by the function and an opening parenthesis. If you
typed the equal sign instead, press “y” to open a list of functions beginning with
that letter. Use the arrow keys, if necessary, to highlight YEAR and press tab.
This enters the function name followed by a parenthesis. If you both type an equal
sign and use the Insert Function dialog, PowerPivot is clever enough not to insert
a second equal sign.

3. Type the letter “o” and use the arrow keys, or mouse, to select Orders[OrderDate].
Press tab to insert this column name.

4. Type a closing parenthesis and notice how it and the first opening parenthesis
are highlighted. This is very useful as it helps you to balance left and right
parentheses in more complex formulas.

5. To check your syntax, click the small check mark button in the formula bar. To
accept and apply your syntax, press enter. To back out, press esc or click the
small cross button.

Should you require more room in which to work, you can drag the lower edge of the
formula bar downward. If you want your formula to appear on more than one line, press
alt-enter.

Working on a DAX formula as a measure is similar. First you click the New Measure
button in the PowerPivot ribbon in Excel. This opens the Measure Settings dialog,
which is shown in Figure 4-2.

In this dialog you can also access the Insert Function dialog—the function button is
just to the right of the Formula caption. You check syntax by clicking the Check Formula
button. You can back out by pressing esc or clicking Cancel. You can enlarge the typing
area by resizing the whole dialog. You apply the formula by pressing enter or clicking OK.

Figure 4-2 Measure Settings dialog

1 1 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Operators and Operator Precedence
DAX has a range of arithmetic, comparison, concatenation, and logical operators. The
arithmetic operators include addition (+), subtraction (–), multiplication (*), division
(/), and exponentiation (^). If you have more than one arithmetic operator, you need
to be aware of operator precedence and how to control it. Multiplication and division
are performed before addition and subtraction, for example. The precedence rules
are similar to those in many other languages. If you wish to override the order of
precedence, you must enclose the part you want to evaluate first inside parentheses.
Here are a couple of examples (you might want to try these as calculated columns on
any table, or as measures):

=7 + 3 * 2

=(7 + 3) * 2

The first example results in 13, the second in 20. In the first example, the default
precedence order means 3 is multiplied by 2 first, and then added to 7. In the second
example, the parentheses force 7 and 3 to be added together first, and then multiplied by 2.

To perform concatenation, you can use the DAX function CONCATENATE(). This is
limited to two parameters, so if you wish to concatenate more than two values, you have
to use a nested CONCATENATE(). Perhaps a neater alternative is to use the ampersand (&)
concatenation operator. The next two examples produce the same result (please note the
use of double quotes to delineate literal string values):

=CONCATENATE("Hello",CONCATENATE("big","world"))

="Hello" & "big" & "world"

The two logical operators, AND and OR, are not keywords but, rather, the functions
AND() and OR(). Each is limited to two parameters, so if you have more you will
need a nested AND() or OR(). Alternatively, you can replace AND() with the double-
ampersand operator (&&) and OR() with the double-pipe operator (||)—these are not
limited to two parameters.. Here are a few calculated column examples:

=AND(1=1,2=2)

=AND(1=1,2=3)

=OR(1=1,2=3)

=AND(1=1,AND(2=2,3=3))

=1=1 && 2=2 && 3=4

=1=1 || 2=2 || 3=4

Note that the logical operators return either TRUE or FALSE.

C h a p t e r 4 : D A X : O v e r v i e w 1 1 7

Data Types
Quite often, functions require input of a certain data type. If the data type is wrong, the
function will fail. Fortunately, if it’s feasible, PowerPivot will often attempt an implicit
conversion of the data type. There are no explicit conversion functions as such, with
the possible exceptions of VALUE() (not VALUES()), FORMAT(), DATEVALUE(), and
TIMEVALUE(). Here are two calculated column examples for you to try on OrderID
column (Whole Number) of the Orders table:

=SUM(Orders[OrderID])

=RIGHT(Orders[OrderID],2)

Both of these work. The first is fine, as SUM() expects a numeric input. The second
is possible, even though RIGHT() expects a text parameter, as PowerPivot does an
implicit conversion from numeric to string. Now change the data type of the OrderID
column to Text (Home ribbon, Formatting group, Data Type drop-down) and try
the next two formulas (same as before, but in a different order to save on redoing the
RIGHT() function formula):

=RIGHT(Orders[OrderID],2)

=SUM(Orders[OrderID])

Only the first one works. SUM() fails because it expects a numeric parameter, and,
this time, there was no implicit data conversion. If you click in the column, you should
see a smart tag that explains the error. Therefore, it’s very important that you get the
data types for your columns correct as implicit conversion does not always work. Don’t
forget to reset the OrderID column back to a data type of Whole Number.

Null Values
In relational databases, such as SQL Server, a missing value is treated as a Null value.
Operations involving a Null generally return a Null, although it is possible to change
this default behavior in SQL Server. In multidimensional databases, such as SSAS,
missing values are treated as zeros or empty strings, depending on the source data type.
PowerPivot is much closer to the latter approach—a missing value is classified as a
Blank. Adding a number to a blank value returns the number, rather than another Blank
or a Null. You can generate a Blank through the BLANK() function. You can generate a
whole column of Blank values by double-clicking an Add Column column header in a
table and renaming the column. You can test for a Blank with the ISBLANK() function.
You may want to try the following formula (results shown in Figure 4-3) as a calculated
column on the Customers table:

=IF(ISBLANK(Customers[Region]),BLANK() & "No region","Region")

1 1 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This formula demonstrates a couple of points about Blank values. The Region
column of the SQL Server Northwind database contains quite a few Nulls. If your
Northwind import is from SQL Server, these Null values are changed into Blank
values. The ISBLANK() function is testing for Blank values. The IF() function is
seeing if ISBLANK() returned TRUE or FALSE. If it’s not TRUE, the output is the
string “Region.” If it is TRUE, the output is the string “No region” concatenated to a
Blank—generated by the BLANK() function. This concatenation results in the string
“No region” and not in another Blank. You can also add a number to a Blank and the
result will be the number. This behavior is different from the default behavior of a Null
in a relational database such as SQL Server.

Why Use the RELATED() Function?
The RELATED() function is frequently used in calculated columns. This section shows
just why it is so popular.

First of all, here’s what RELATED() does, in multidimensional terms. RELATED()
denormalizes attributes from multiple dimensions into a single, de-snowflaked
dimension and creates a natural user hierarchy within that single dimension. Wow!
No wonder it’s popular! It is similar to the Excel VLOOKUP() function, but far more
versatile. VLOOKUP(), for example, requires a specific arrangement of columns and only
references the first one—RELATED() can access any column in a related table.

Secondly, here’s what it does, in somewhat plainer English: It makes viewing a
pivot table easier, faster, more intuitive, and much more likely to reveal true business
intelligence. It means the consumer of the pivot table needs to know nothing about
databases or about relationships between tables—RELATED() makes relationships
completely transparent. Maybe it’s worth a look.

Figure 4-3 A calculated column

C h a p t e r 4 : D A X : O v e r v i e w 1 1 9

An important point to make is that for RELATED() to work its magic and hide
relationships, you have to have table relationships in the first place! The same is true
for its sibling function, RELATEDTABLE(). But let’s go right back to the beginning
and start with no relationship between the Products and the Categories tables from
the Northwind database. Here’s a step-by-step example that demonstrates the value of
relationships and the RELATED() function:

1. Delete the relationship between the Products and Categories tables—from the
Design ribbon, choose Relationships group | Manage Relationships button—
and select the relationship before clicking Delete, followed by clicking OK on
the warning, and then Close in the Manage Relationships dialog. The Manage
Relationships dialog, with the relationship to delete selected, is shown in Figure 4-4.

2. Also, delete the existing RELATED() function by deleting the Category calculated
column in the Products table.

3. Insert a pivot table into a new worksheet—choose Home ribbon | Reports group |
PivotTable button | PivotTable from the drop-down, and click OK.

4. In the Excel worksheet, put Quantity from Order Details in Values,
CategoryName from Categories, and then ProductName from Products in
Row Labels. Ignore any warning message in the field list about relationships
being needed, and take a look at the data. If you were to heed the message and
let PowerPivot create required relationships, you would not see the mismatch
of data we are about to consider. There are a couple of strange things going
on. If you look under Beverages, you can see Alice Mutton, which is not a

Figure 4-4 Manage Relationships dialog

1 2 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

beverage, and Chai, which is. Under Meat/Poultry, you can see Alice Mutton
in its correct place, but also Chai, which is in the wrong place. As there is no
relationship between categories and products, something called a cross-join
with no possibility of an inner join (in SQL-speak), or a Crossjoin() with
no possibility of Autoexists (in MDX-speak), has occurred. The pivot table is
showing every possible combination of categories and products, even if we know
that many of the combinations are invalid. As the Products table is still related
to the Order Details table (through the common ProductID column), the break
between categories and products also means a break between categories and the
quantity sold. There is no relationship between CategoryName and Quantity. If
there is no relationship between a row label (or column label) and a value, a pivot
table will display total figures repeated. That’s why the Grand Total is 51317
and the subtotals for Beverages and Meat/Poultry also show 51317. If you ever
get repeating figures like this in your own pivot tables, you know you’ve got the
relationships wrong. This example is shown in Figure 4-5. This analysis raises
a fundamental issue—how do you know when a product is under the wrong
category. I had no idea that Chai was a beverage and that Alice Mutton was
meat/poultry (although the word mutton might provide a clue—but then again,
the Indian delicacy “Bombay duck” is a fish)! If you aren’t (or your end user isn’t)
familiar with every single item of data, you must go back and check the data
in the source. In this example, you might use the following query, against SQL
Server or Access, to establish that Chai is a beverage and Alice Mutton is meat/
poultry:

select ProductName, CategoryName
from Products as P
inner join Categories as C
on P.CategoryID = C.CategoryID

5. Let’s try to “force” a relationship. Add a column to the Products table and enter
the following DAX formula:

=RELATED(Categories[CategoryName])

Figure 4-5 Repeating data indicating missing relationships

C h a p t e r 4 : D A X : O v e r v i e w 1 2 1

6. This will fail, and the smart tag will tell you why. We need a relationship before we
can use RELATED(). Accept the error for now and rename the column to Category.

7. Re-establish our deleted relationship—first, from the Design ribbon, choose
Relationships group | Create Relationship button. In the Create Relationship
dialog, relate the Products table to the Categories table on the CategoryID
column before clicking Create. The Create Relationship dialog is shown in
Figure 4-6. Your Category column, using the RELATED() function, should now
be working.

8. Switch to Excel and click the Refresh button at the top of the field list. Replace
CategoryName from the Categories table with Category from the Products table.
Make sure that Category is above ProductName in the Row Labels drop-zone.
Now your pivot table is looking good. The result is shown in Figure 4-7. The
subtotals appear reasonable and Alice Mutton is under Meat/Poultry only and
Chai can only be seen under Beverages.

Figure 4-6 Create Relationship dialog

Figure 4-7 Non-repeating data

1 2 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

9. But you can even go one better than this! You don’t need the Categories table in
the field list—it’s only going to confuse your business user. After all, you have just
denormalized its data (that is, the category name) into the Products table. Switch
to PowerPivot. Hide all the columns of the Categories table from the pivot table.
With the Categories table current, click the Hide and Unhide button in the
Columns group on the Design ribbon. The resulting Hide and Unhide Columns
dialog is shown in Figure 4-8. Turn off the check box in the In PivotTable column
of the (Select All) row and click OK.

10. Switch to Excel and click the Refresh button at the top of the field list. The
Categories table has disappeared from the PowerPivot Field List. When you hide
all of a table’s columns in this manner, you are also hiding the table itself.

That’s quite powerful stuff. You have put two tables into one and hidden one of
them. This greatly simplifies the end-user experience. Your users don’t need to know
about the Categories table and whether it has relationships or not—indeed, they
may not even understand relationships. In addition, they now have a nice drill-down
from category to product. If you are familiar with SSAS cube design, you have just
simulated a natural user hierarchy in one table based on attributes from two tables. You
have hidden the original attribute (CategoryName) that now populates a new level
(Category) in your new, simulated natural user hierarchy.

You can easily extend this. You can create a drill-down hierarchy in one table based
on three or more tables. For example, you could display the category for each order line

Figure 4-8 Hide and Unhide Columns dialog

C h a p t e r 4 : D A X : O v e r v i e w 1 2 3

in the Orders Details table. Your column would need to reference the Products table,
which in turn references the Categories table. This is, in effect, a double jump. The next
two lines of code show how (the first goes in the Products table; the second goes in the
Order Details table and assumes that the first one is named Category):

=RELATED(Categories[CategoryName])

=RELATED(Products[Category])

This is all very nice, but there is one proviso. You can’t relate a table to itself in
PowerPivot, and therefore, you can’t use RELATED() if it references a column in the
same table. Thus, you can’t create a hierarchy directly in the Employees table. This is
a self-join table, in a relational source, with the Reports To column referencing the
EmployeeID column. During the import of this table (assuming a relational source), if
you click the Details hyperlink in the Messages column of the Data Preparation row, you
will see the message that self-joins are not supported. To get around this problem, you
are probably going to have to write some SQL that joins the table to itself and unravels
the hierarchy. You might use a common table expression (CTE) to do so.
RELATED() has a sibling function, RELATEDTABLE(). In general, RELATED()

would appear in a child table (the many side of a relationship) and pull back a column
from a parent table. For example, you could add the category name to a products
table. In general, RELATEDTABLE() would appear in the parent table and reference
the matching rows in the child table. As it may well return more than one matching
row, RELATEDTABLE() returns a table rather than a column. As such, it can’t be used
to populate a column directly. However, it can be fed into another DAX function that
accepts a table as a parameter. The so-called X-functions do just that. Here’s an example:

=COUNTX(RELATEDTABLE('Order Details'),'Order Details'[OrderID])

If you have a calculated column in the Orders table, this will show how many order
lines there were in each order.

Why Use the CALCULATE() Function?
The CALCULATE() function is very popular in measures. Here, we examine why this
might be so.

Measures have filter context. As the user filters (Report Filter and/or Row Labels
or Column Labels) and/or slices (Slicers Vertical or Slicers Horizontal), they change
the context in which the measures are shown in the pivot table. By default, the
measure values will change to reflect the current context—measures are re-evaluated
every time the context is changed. This may or may not be the result you desire.

1 2 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The CALCULATE() function gives you total control over the way filters affect the
measures. You can use the function to honor an existing filter, you can ignore the
filter altogether, you can change the filter, you can honor the filter only in part, or
you can create a new filter context that is completely different from the filter context
implemented by the user in the pivot table GUI. Wow again!

In slightly simpler language, CALCULATE() lets you control how measures (added to
the Values drop-zone) change or don’t change as the user manipulates the pivot table.
Here’s a step-by-step example to get you started:

1. Create a new pivot table, or remove all entries from the PowerPivot Field List
drop-zones for an existing pivot table.

2. Add Category (from the Products table) to Row Labels. Add Year (from Orders)
to Slicers Horizontal. Add Country (from Customers) also to Slicers Horizontal.
Add Quantity (from Order Details) to Values—its default name should be Sum
of Quantity. The resulting pivot table is shown in Figure 4-9.

3. Notice the grand total is 51317. Use the slicer to show just 1996—the total is now
9581 (please be aware that there are different incarnations of Northwind with
differing years and sales figures—you may adjust the exercise to reflect your totals
and years). Remove the Year slice and slice on Austria from the Country slicer;
the total is now 5167. Then, try both 1996 and Austria; the result is 949. Then
remove the slices. You have just been changing the filter context of the measure
(an implicit measure based on a table column, Quantity) in the pivot table.

Figure 4-9 Pivot table example

C h a p t e r 4 : D A X : O v e r v i e w 1 2 5

4. With the focus in the pivot table, click the New Measure button in the Measures
group on the PowerPivot ribbon. In the Measure Settings dialog, make sure the
Table name is Order Details; for Measure name, enter DAXMeasure; in Formula,
enter the following DAX formula; and click Check Formula. Your dialog should
look like Figure 4-10. Click OK. Your pivot table now resembles Figure 4-11.

=SUM('Order Details'[Quantity])

Figure 4-10 Measure Settings dialog

Figure 4-11 Pivot table with a measure based on a DAX formula

1 2 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

5. Check the overall total, then the totals for 1996, for Austria, and for 1996 and
Austria. Your new measure written in DAX is no different from the implicit measure.

6. Change the DAX formula. One way to do this is to click the Measure Settings
button, while the focus is in the pivot table. Alternatively, you can right-click the
measure in the field list and choose Edit Formula. Yet another method is to right-
click the measure in the Values drop-zone and choose Edit Measure. The new
syntax is as follows:

=CALCULATE(SUM('Order Details'[Quantity]))

7. Check the overall figure, 1996, Austria, and 1996/Austria again. There is no
change. The measure is still honoring the filter context.

8. Once more, change the formula. This time, extend the CALCULATE() function as
shown here:

=CALCULATE(SUM('Order Details'[Quantity]),ALL(Customers[Country]))

Try with no slicer (that is, no filter), just 1996 with all countries, just Austria with
all years, and just 1996 with Austria. The four results are shown in Figure 4-12
(No filter), Figure 4-13 (Year filter), Figure 4-14 (Country filter), and Figure 4-15
(Year and Country filter). These are the first of three sets of four results in this
exercise.

Figure 4-12 No filter context 1/3

C h a p t e r 4 : D A X : O v e r v i e w 1 2 7

Figure 4-13 Year filter context 1/3

Figure 4-14 Country filter context 1/3

1 2 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is the core of DAX. If you understand what’s happening, you understand DAX.
The ALL() function, in the preceding example, is acting as the filter or SetFilter
parameter of the CALCULATE() function. ALL() is overriding the current filter
context. The filter parameter is optional and you can have more than one. Here,
it’s telling the pivot table to ignore any filter on country (for example, Austria) that
the user may choose. It’s always going to show the figure for all countries—thanks
to the ALL() function. Why might this be very useful? There are a number of
important reasons. For example, you can have highly customized and flexible
measures that display exactly what you want. Or, you might want to control the
scope of the end user—so that, even if they add countries and filter on a particular
country, the figures they see are still for all countries. You are programmatically
overriding the user actions in the GUI. Or you might have measures based on this
measure, and those new measures require the data for all countries.

9. Let’s experiment. Change the formula as follows:

=CALCULATE(SUM('Order Details'[Quantity]),ALL(Orders[Year]))

Now as you filter, the Year slicer is totally ignored, but the Country filter is
operative again. Some of the possible results are shown in Figure 4-16 (No filter),
Figure 4-17 (Year filter), Figure 4-18 (Country filter), and Figure 4-19 (Year
and Country filter). Take some time to digest the figures and understand what is
happening.

Figure 4-15 Year and Country filter context 1/3

C h a p t e r 4 : D A X : O v e r v i e w 1 2 9

Figure 4-17 Year filter context 2/3

Figure 4-16 No filter context 2/3

1 3 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 4-19 Year and Country filter context 2/3

Figure 4-18 Country filter context 2/3

C h a p t e r 4 : D A X : O v e r v i e w 1 3 1

Figure 4-20 No filter context 3/3

10. And here’s yet another change to the formula (some results are shown in Figure 4-20
(No filter), Figure 4-21 (Year filter), Figure 4-22 (Country filter), and Figure 4-23
(Year and Country filter)):

=CALCULATE(SUM('Order Details'[Quantity]),
ALL(Orders[Year]),ALL(Customers[Country]))

You have removed the filter context for both Year and Country. No matter
which years and/or countries are chosen, the totals remain the same. The ALL()
function is repeated for both slicers/filters. However, you can have many slicers.
You can also filter from Report Filter or from Column Labels or from Row
Filters. If you had ten possible filters, you would need to repeat the ALL()
function ten times. The next step shows a very convenient alternative.

11. Change the formula as follows:

=CALCULATE(SUM('Order Details'[Quantity]),
ALLEXCEPT('Order Details',Products[Category]))

Try slicing on 1996 and/or Austria again. The results are unchanged from the
previous step. The ALLEXCEPT() function is causing the measure to ignore all
filters on the Order Details table (including the Quantity) except any filter based
on product category.

1 3 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 4-22 Country filter context 3/3

Figure 4-21 Year filter context 3/3

C h a p t e r 4 : D A X : O v e r v i e w 1 3 3

12. This final step is given with a little less guidance. Try each of the following five
formulas in turn and observe the totals in the pivot table as you slice/filter on
1996 and/or Austria:

=CALCULATE(SUM('Order Details'[Quantity]),
FILTER(Orders,Orders[Year]=1996))
=CALCULATE(SUM('Order Details'[Quantity]),Orders[Year]=1996)
=CALCULATE(SUM('Order Details'[Quantity]),Customers[Country]="Austria")
=CALCULATE(SUM('Order Details'[Quantity]),
Customers[Country]="Austria",Orders[Year]=1996)
=CALCULATE(SUM('Order Details'[Quantity]),
Customers[Country]="Austria" || Customers[Country]="Mexico",
Orders[Year]=1996)

The first and second examples superficially produce the same result until you slice
on 1997—the choice is yours (FILTER() returns a fixed table). The second example is
more efficient than the first as it is evaluated only for the cells in the current context;
FILTER() evaluates against the whole Orders table. The fifth example includes
Mexico as well as Austria.

The CALCULATE() function, in our examples, has been using the SUM() function
on the Quantity. You could write the SUM() function as a separate measure and base
CALCULATE() on this new measure. In that case, the SUM() function would be

Figure 4-23 Year and Country filter context 3/3

1 3 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

encapsulated and not appear in the CALCULATE() function. When CALCULATE()
is based directly on another measure, you can omit CALCULATE() itself, but the
filter parameters must be enclosed inside parentheses. The measure itself acts as a
function. If you want to try, create a measure called QuantitySum and amend the last
CALCULATE() example in Step 12. Here are the two DAX formulas you will need:

=SUM('Order Details'[Quantity])

=CALCULATE([QuantitySum],

Customers[Country]="Austria" || Customers[Country]="Mexico",

Orders[Year]=1996)

Now change the CALCULATE() formula, as shown next, to use the shorthand:

=[QuantitySum](Customers[Country]="Austria" ||

Customers[Country]="Mexico",Orders[Year]=1996)

Please note that the filter parameters are enclosed in parentheses and there is no
comma (,) after the measure name.

This section has been a fairly detailed introduction to the CALCULATE() function.
To reiterate, CALCULATE() can be used to control the filter context of measures within
a PowerPivot pivot table.

Where to Go from Here
This chapter has been an overview of and introduction to DAX. As such, only a very
few functions have been covered. In particular, the very useful date and time functions
have not been mentioned. These functions enable you to build time intelligence—for
example, year-on-year changes and year-to-date figures. The second part of this book
(Part II, DAX) delves much more deeply into DAX. It looks at every DAX function.
Among many other techniques, it demonstrates how to include time intelligence in
your PowerPivot pivot tables.

Pivot Tables and Pivot
Charts: Overview

Chapter 5

1 3 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This chapter is concerned with looking at pivot reports, that is, pivot tables and
pivot charts. The chapter is an overview; a whole book could easily be written
about pivot tables in Excel—and another one just on pivot charts! The emphasis

here is on creating pivot tables and charts. The most important focus is on how to add
data to a pivot report using the PowerPivot Field List. But, once this is done, there are
dozens of context menus, drop-down menus, and quite a few ribbons with dozens of
buttons. Some of these are explored in this chapter, especially where they are particularly
relevant to working with PowerPivot. These menu options and buttons help you
organize, control, and format your pivot reports. By the end of the chapter, you should
be in a position to create meaningful and attractive pivot tables and charts.

Key concepts Creating pivot tables, creating pivot charts, linking pivot charts
to pivot tables, using the PowerPivot Field List with pivot tables, using the
PowerPivot Field List with pivot charts, organizing pivot reports, controlling pivot
reports, formatting pivot reports

Background to Pivot Reports
A pivot report is either a pivot table or a pivot chart. A pivot table shows data as values
or figures. A pivot chart is a graphical representation of data. Both, of course, have their
place in business intelligence. You might use a pivot chart to monitor your business,
with its easy high-level visualization of business metrics. You might use a pivot table
to analyze those metrics in a little more depth and detail. Often, you might want both,
perhaps with the chart reflecting the data in the table. Alternatively, your chart may
well show different data from your table. In addition, you can have multiple pivot tables
and charts. Excel and PowerPivot provide many options for inserting pivot reports. The
number of options available can be a little overwhelming at first. There are so many
options, as there are different types of pivot reports supported by Excel.

A pivot report can be based directly on worksheet data—you could use the
PivotTable button on the Insert ribbon to do this. Or, you might want a pivot report
based directly on an SSAS cube. You can accomplish this through the From Other
Sources button on the Data ribbon. Yet again, you can have a pivot report based on a
PowerPivot model. In that case you might insert the report through the PivotTable
button on the PowerPivot ribbon, or through the PivotTable button on the Home
ribbon in the PowerPivot window.

There are also a number of options for inserting a pivot table and a related or an
unrelated pivot chart. In addition, there are different ways of inserting supporting
objects, such as slicers. To help cut through the complexity, this chapter is devoted only

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 3 7

to pivot reports based on PowerPivot models. Furthermore, pivot tables and pivot charts
will be considered separately—the longer section on pivot tables coming first. The later
section on pivot charts will demonstrate how to link a chart to a table and how to have
an independent chart. And, where there are alternative methods of reaching the same
goal, the easiest and most direct alternative will be shown.

Pivot Tables
When you want to create a pivot report, the choice is between a pivot table and a pivot
chart, or both together. You can, of course, add further tables and charts retrospectively,
whether related or unrelated to the first reports inserted. Here, we discuss how to insert
a single pivot table.

Creating a Pivot Table
As the pivot tables shown in this book are based on a PowerPivot model, you must first
have some data in the PowerPivot model. Once the data is assembled, you are ready
to view it in a pivot table. If you change the PowerPivot model later, you can easily
update the field list by clicking the Refresh button that will appear at the top of the
PowerPivot Field List for the pivot table.

There are two main ways of inserting a pivot table (as stated earlier, this chapter
concentrates on the most direct and easiest alternatives and, for the sake of clarity,
does not mention every single possibility). One way to create a pivot table is to click
the PivotTable button in the Reports group on the Home ribbon in PowerPivot. The
second way is to click the PivotTable button in the Report group on the PowerPivot
ribbon in Excel. Both of these result in the same drop-down menu. This menu is shown
in Figure 5-1.

In this menu, there are two choices for inserting a stand-alone pivot table (that is,
a pivot table without a related pivot chart). One option is called PivotTable and the
other Flattened PivotTable. There have been many examples of the former throughout
this book—but, to show the comparison between a “normal” and a flattened pivot table,
Figure 5-2 shows a typical result after choosing PivotTable. Figure 5-3 shows a typical
result after choosing Flattened PivotTable.

A flattened pivot table looks more like an Excel table. It’s flattened, or completely
expanded, and there is no option to collapse column or row labels. A simpler display
sacrifices the ability to drill up or drill down.

Before the pivot table is inserted, the Create PivotTable dialog allows you to decide
upon the location of the pivot table. This dialog is shown in Figure 5-4.

1 3 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 5-1 Inserting a pivot table menu

Figure 5-2 Unflattened pivot table

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 3 9

Figure 5-3 Flattened pivot table

Figure 5-4 Create PivotTable dialog

1 4 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

PowerPivot Field List for Pivot Tables
Once the pivot table has been inserted into an Excel worksheet, you control the
data that appears through the PowerPivot Field List. This field list has a slightly
different appearance when you are working with a pivot chart. In this section, we are
concentrating on the PowerPivot Field List that accompanies a pivot table. An example
of a PowerPivot Field List is shown in Figure 5-5.

Often, the PowerPivot Field List will simply disappear. It’s sensitive to context, so it
only shows when the focus is within a pivot table. If you have a Report Filter, you can
also place the focus there to display a hidden field list. Placing the focus on a slicer does
not cause a hidden field list to appear. If you still can’t see the PowerPivot Field List,
make sure the Field List toggle button, in the Show/Hide group on the PowerPivot
ribbon, is turned on.

Let’s spend a little time looking at the PowerPivot Field List. By default, it’s docked
on the right-hand side of the worksheet containing the pivot table. You can undock it
simply by dragging on its title bar so that it becomes free-floating. You can then dock it
on any side of the worksheet by dragging far enough. Alternatively, if it’s free-floating,
you can redock it in the last docked position by double-clicking its title bar. If you click

Figure 5-5 PowerPivot Field List for a pivot table

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 4 1

the Close button at the right of the title bar, the PowerPivot Field List gets hidden,
even if the focus is in the pivot table. To redisplay it, click the Field List button on the
PowerPivot ribbon. Immediately to the left of the Close button is a small button that
opens a drop-down menu. This menu gives you choices for moving, sizing, or closing
the field list. The menu is shown in Figure 5-6. Of course, it’s possible to resize the field
list by dragging its left-hand border (assuming it’s docked on the right-hand side of the
worksheet).

Just below the title bar is a text box for searching the field list. However, there
may well be another entry between the title bar and the search text box. This area is
sometimes referred to as the message area. There are two possible messages that are
displayed in this message area. One informs you that relationships are needed between
tables. This can happen if suitable table relationships have not been established in the
PowerPivot window. The message can only appear if the Detection toggle button, in
the Relationship group of the PowerPivot ribbon, is turned on (this is the default state).
If the message (“Relationship may be needed”) does appear, clicking the Create button
causes PowerPivot to attempt to find and create the required relationship. A lack of
suitable relationships between tables in the PowerPivot model may result in inaccurate
and misleading data appearing in the pivot table. This relationship message is shown in
Figure 5-7.

The second message that may show occurs when the PowerPivot model is changed
after the pivot table has been created. For example, you may have returned to the
PowerPivot window and created a new calculated column in a table, or added a new
table to the model. To the right of the message (“PowerPivot data was modified”) is a
Refresh button. Clicking this button updates the PowerPivot Field List to reflect the
changes made in the PowerPivot model. This message is shown in Figure 5-8.

If there is a message in the message area, the search text box is underneath the
message. If there’s no message, the search box is immediately underneath the title
bar. This text box is used to search for tables, regular columns, calculated columns, or
calculated measures in the table and column list area of the PowerPivot Field List. This
is handy when there are many tables and columns and measures. If you search for a
column or a measure, and its containing table is collapsed, the search will automatically
expand the table to reveal its columns and measures. If there are multiple potential
results, the arrow buttons step through the entries. Figure 5-9 shows the result of
searching for the ShipCountry column.

Figure 5-6 PowerPivot Field List drop-down menu

1 4 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 5-7 “Relationship needed” message

Figure 5-8 “Data modified” message

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 4 3

Apart from a few of the features already discussed, the PowerPivot Field List does
not contain ribbons or buttons or left-click menus. However, there are a number of
context-sensitive, right-click menus. As they are context-sensitive, these pop-up menus
may well present different choices. The next few sections take a look at these context
menus.

Table Context Menu
To see the table context menu, right-click on any table that appears in the table and
column list section of the PowerPivot Field List. The menu is shown in Figure 5-10.
The first four choices in this menu are for expanding or collapsing either the selected
table or all tables. The fifth entry, Add New Measure, is very useful. If you choose this
option, the new calculated measure will automatically default to the selected table.
It means that you don’t have to change the Table name property in the subsequent
Measure Settings dialog. The Measure Settings dialog is shown in Figure 5-11.

Figure 5-9 Searching the PowerPivot Field List

1 4 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Column Context Menu
You can have both regular and calculated columns in the PowerPivot Field List. As a
reminder, a regular column is part of the data imported into the PowerPivot model—a
calculated column is added later using a DAX formula. Both types of columns look the
same in the PowerPivot Field List, and both have the same context menu. If it’s important
to distinguish between regular and calculated columns, you can adopt a naming convention.
The context menu for a column is shown in Figure 5-12. The second, third, and fourth
choices in the menu are disabled; they are relevant to calculated measures only. The final
six entries in the menu allow you to add the column to one of the six drop-zones at the
foot of the PowerPivot Field list. You can, of course, accomplish that simply by dragging to
the required drop-zone. Adding a column to the Values drop-zone implicitly allows it to
function as a measure. By default, a numeric column will be summed, and a non-numeric
column counted (unless it can be implicitly converted into a number, like OrderID in our
Northwind model). Adding a column to any other drop-zone leaves it as a column (or a
non-measure dimension attribute, if you know your SSAS).

Figure 5-10 Table context menu

Figure 5-11 Measure Settings dialog

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 4 5

Calculated Measure Context Menu
An explicit measure, or calculated measure, is distinguished from regular and calculated
columns by the small calculator icon after its name. Unlike for a column, the second,
third, and fourth options in the context menu are enabled for an explicit measure.
Clicking Edit Formula opens the Measure Settings dialog, so you can amend the DAX
formula for the measure. The only drop-zone available for a measure is Values. You can’t
place a measure in any of the other five drop-zones. The context menu for a measure is
shown in Figure 5-13.

Drop-Zone Entry Context Menu (Apart from Values)
There are six drop-zones in the PowerPivot Field List, corresponding to the areas in
or around a pivot table. The drop-zones are Slicers Vertical, Slicers Horizontal, Report
Filter, Column Labels, Row Labels, and Values. The Values drop-zone (corresponding
to the data area in a pivot table) is subtly different from the other five. As such, it’s
covered separately in the next section. Measures can only be added to the Values

Figure 5-12 Column context menu

Figure 5-13 Measure context menu

1 4 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

drop-zone and not to any of the other five. None of the six drop-zones has its own
context menu, but context menus are enabled for any entry in the drop-zone. For
non-Values drop-zones, the entries can only be regular or calculated columns. For the
Values drop-zone, the entry may be a column or a measure.

Figure 5-14 shows the context menu when you right-click on a column in any
drop-zone (apart from Values). The first group of four choices allows you to change
the position of the entry within the current drop-zone (assuming you have more than
one entry). You can achieve the same thing by simply dragging the entry up or down.
The second group of six entries lets you move the column to another drop-zone. Again,
you can also do this by simply dragging from one drop-zone to another. The eleventh
option, Summarize By, is disabled—it only applies to columns in the Values drop-zone.
The Field Settings option opens the Field Settings dialog, where you can change the
Custom Name property for the column. The Field Settings dialog is shown in
Figure 5-15.

Figure 5-14 Drop-zone entry context menu (apart from Values)

Figure 5-15 Field Settings dialog

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 4 7

Drop-Zone Entry Context Menu (Values Only)
An entry in the Values drop-zone can be either a measure or a column (regular
or calculated). The context menu (shown in Figure 5-16) for each type of entry is
slightly different. If it’s a measure, the menu does not allow you to move the entry to
another drop-zone. Also, if it’s a measure, the Summarize By option is disabled—your
aggregation will be part of the DAX formula for the measure. Right-clicking on a
measure and choosing Edit Measure opens the Measure Settings dialog for that measure,
as shown in Figure 5-17. Right-clicking on a column and choosing Edit Measure
opens the Measure Settings dialog for that column—this is shown in Figure 5-18.

Figure 5-16 Drop-zone entry context menu (Values only)

Figure 5-17 Measure Settings dialog for a measure

1 4 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The Measure Settings dialog for a column lets you change the aggregation function for
that column—clicking Summarize By does the same. The Measure Settings dialog for
a column lets you change the name for that column. For example, if you add the Sales
Amount column from the Order Details table to the Values drop-zone, it’s called Sum of
Sales Amount, and you may want to change this back to Sales Amount. The Summarize
By option in the context menu is only enabled for columns. This leads to a fly-out menu
(shown in Figure 5-19), which presents another way to change the aggregation on a
column. The aggregation choices are Sum, Count, Min, Max, and Average. The only
one that makes sense for a non-numeric column is Count. All of these aggregations are
also available for measures—in that case, the aggregation would be defined in the DAX
formula for the measure. Using a DAX formula for a measure provides much more
flexibility than using Summarize By for a numeric column.

Figure 5-18 Measure Settings dialog for a column

Figure 5-19 Summarize By fly-out menu for a column

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 4 9

Slicers for Pivot Tables
Adding slicers to a pivot table is best done in the PowerPivot Field list by placing
columns in either Slicers Vertical or Slicers Horizontal. You can also add slicers from
the Insert ribbon, but the slicer does not get added to the PowerPivot Field List. Yet
another alternative is to add a slicer from the PivotTable Tools/Options ribbon.

Slicers too have their own context menu. This menu (shown in Figure 5-20) has a
large number of options—only the most interesting from a PowerPivot perspective are
discussed here. There are three options for sorting the buttons in a slicer and one option
for removing a filter. You can also control the sort order of the buttons by choosing
Slicer Settings. A filter can be removed more simply by clicking the filter button at the
top right of the slicer.

Choosing Size and Properties opens the Size and Properties dialog. The Position
and Layout page has a useful setting, called Number of Columns. This page of the
dialog is shown in Figure 5-21. Selecting Slicer Settings in the context menu opens
the Slicer Settings dialog. This dialog is shown in Figure 5-22. In the Slicer Settings
dialog you can control how the items in the slicer are sorted. In addition, you can decide
whether to have a header or not, and its caption. There are further options that apply to
items with no data—by default, these appear as buttons without a caption in the slicer.
You may want these to be hidden in your slicer.

Figure 5-20 Slicer context menu

1 5 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 5-21 Position and Layout page of the Size and Properties dialog

Figure 5-22 Slicer Settings dialog

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 5 1

Pivot Table Menus and Ribbons
The pivot table itself has context menus too. Lots of them! Whole books have been
written, and will be written, about using and customizing pivot tables. In a single chapter,
not every single avenue can be followed. Instead, the emphasis is on those options that
are most useful and interesting from a PowerPivot perspective. For the purposes of this
section, a pivot table is defined as the areas corresponding to the Report Filter, Column
Labels, Row Labels, and Values drop-zones of the PowerPivot Field List. As pivot table
areas, they all have context menus and/or drop-down menus. In addition, there are
ribbons that both duplicate and extend some of the options available through the menus.
To avoid undue repetition, not every alternative is explored—the emphasis here is on ease
of implementation. The following sections detail some of the drop-down menu options,
context menu options, and ribbon button functionality for PowerPivot pivot tables.

Report Filter Drop-Down Menu
When you add a column to the Report Filter drop-zone in the PowerPivot Field List,
a filter will appear immediately above the main body of the pivot table. You can add
more than one Report Filter, if you wish. Each filter consists of two cells. The first cell
shows the column name, while the second cell shows the current filter on that column.
By default, the filter is All. The second cell contains a small button that leads to a drop-
down menu. The sole purpose of this menu is to enable you to set a filter context for
the data in the pivot table. In many ways, a Report Filter is similar to a slicer. The drop-
down menu for a Report Filter can have one of two possible formats. The appearance is
governed by the Select Multiple Items check box at the bottom of the menu. The two
possible formats are shown in Figures 5-23 and 5-24.

Figure 5-23 Report Filter drop-down menu without multiselect

1 5 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The example shown is for the LastName column from the Employees table in
Northwind. There are only a few entries to browse before making a decision about a
filter. When you have lots of entries, the search box at the top of the menu is very useful.

Column Labels/Row Labels Drop-Down Menu
When you add a column to Column Labels, a cell with the caption Column Labels
appears in the pivot table. This cell has a small button that opens the Column Labels
drop-down menu. The same is true when you add a column to Row Labels. Both of the
drop-downs are the same—an example (using the Country column from the Customers
table) is shown in Figure 5-25. Please note that it is possible to hide the cell, and
then the drop-down menu is unavailable. Its visibility is determined by the setting for
Display Field Captions and Filter Drop Downs on the Display tab of the PivotTable
Options dialog. This dialog is accessed through the Options button in the PivotTable
group of the PivotTable Tools/Options ribbon.

This drop-down menu is more feature-rich than the one for a Report Filter. It allows
you to sort, not just filter—and the filter options are more sophisticated. The menu
is divided into three sections. The first section contains three options and is devoted
to sorting. The second section, to do with filtering, also has three options. The third
section includes a search box and all the labels (or captions) for the column. In the first
section, you can sort in an ascending or descending order. If you require more control
over sorting, click More Sort Options. This opens the Sort dialog shown in Figure 5-26.
In the example demonstrated here (on the Country column from the Customers table),
the sort has been defined as descending on the value of the Sales Amount in the data area.

Figure 5-24 Report Filter drop-down menu with multiselect

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 5 3

Figure 5-25 Column Labels/Row Labels drop-down menu

Figure 5-26 Sort dialog

1 5 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This dialog has a More Options button that leads to a More Sort Options dialog. This
dialog is shown in Figure 5-27. It contains a really useful drop-down labeled First Key
Sort Order—this is invaluable when you want to sort alphabetic months of the year
or days of the week in their numeric order. You can sort months, for example, from
January to December, and override an alphabetic sort.

The second section of the Column Labels/Row Labels drop-down menu is for
filtering. The first of the three entries in this section is for clearing any existing filter.
The second and third entries are for Label Filters and Value Filters, respectively. Each
of these has its own fly-out menu. These fly-out menus, in turn, have options that lead
to dialogs (apart from the Clear Filter option) where sophisticated filtering can be
implemented. Label Filters are filters based on the values of the column. Value Filters
are filters based on the values of a measure in the data area of the pivot table—although
you can also base them on counts of values in columns. The Label Filters fly-out is
shown in Figure 5-28. All of the options (apart from Clear Filter) lead to the Label
Filter dialog as shown in Figure 5-29. This dialog includes 14 different comparison
operators or phrases. In the example shown, both Argentina and Austria will be
removed from the list of countries. To remove Label Filters, click Clear Filter in the
Column Labels/Row Labels drop-down menu.

Figure 5-27 More Sort Options dialog

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 5 5

The Value Filters fly-out menu is shown in Figure 5-30. All of the options (apart
from Clear Filter) result in a dialog. This dialog is entitled Value Filter for eight of the
nine options that open a dialog. The Top 10 option opens the Top 10 Filter dialog. In
either of these two dialogs, you can filter the column or row labels by the value of a
measure in the data area of the pivot table. The Value Filter dialog is shown in Figure 5-31.
The dialog has a total of eight comparison operators or phrases. The Top 10 Filter
dialog is shown in Figure 5-32. This dialog is where you choose to view the top or
bottom performers in relation to a particular measure.

Figure 5-28 Label Filters fly-out menu

Figure 5-29 Label Filter dialog

1 5 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Label Filters and Value Filters are mutually exclusive. You can’t have both Label
Filters and Value Filters. Strictly speaking, that’s not quite true. You can have both
Label Filters and Value Filters, but not through the GUI. You have to write the MDX
(not DAX!) to create a named set. This alternative is available through the Fields, Items,
& Sets button in the Calculations group of the PivotTable Tools/Options ribbon. This
is an advanced topic and is introduced in Chapter 12.

The final section of the Column Labels/Row Labels drop-down menu is for
searching for entries and implementing filtering by selecting/deselecting check boxes.
There is also a context menu for entries in rows and columns. This, too, allows you
to sort and filter. The important options in this menu are covered elsewhere in this
chapter—there are often alternative ways of reaching the same goal in a pivot table.

Data Area Context Menu
When you add a column or measure to the Values drop-zone, it appears in the data area
of the pivot tables. Usually, you would want to add a numeric column or measure. If it’s
a non-numeric column, the only useful aggregation is that of Count. The net result is

Figure 5-30 Value Filters fly-out menu

Figure 5-31 Value Filter dialog

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 5 7

one or more figures or values in the data area. If you right-click on a cell containing a
value, a context menu appears. This is shown in Figure 5-33.

This menu includes many options. Some of these lead to dialogs, some to fly-out
menus. Some of the options are very powerful indeed—Show Values As is particularly
powerful and can transform your pivot tables from business intelligence into business
wisdom! Show Values As, therefore, is covered in great detail shortly, in the practical
later in this section. Not all of the options in the context menu are covered here. Some
are available through a ribbon as well and will be mentioned when we reach the section
of this chapter on ribbons. Some are fairly obvious, for example, Copy or Remove, and
will not be discussed. The Additional Actions option is only relevant for pivot tables
based directly on SSAS cubes and not for those based on PowerPivot models, at least in
this release of PowerPivot. The ones remaining, and covered here, include Format Cells,
Number Format, Sort, and Show Values As.

Figure 5-32 Top 10 Filter dialog

Figure 5-33 Data area context menu

1 5 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The Format Cells option opens the Format Cells dialog. This dialog is shown in
Figure 5-34 with the Font tab selected. One thing you might consider doing here is
choosing a color for the data values. Format Cells only works on the current cell. If
you want to format all the cells containing the value, use Number Format instead.
Alternatively, you can go through the Field Settings button in the Active Field group
of the PivotTable Tools/Options ribbon.

Unlike Format Cells, Number Format affects all of the cells that contain the measure.
Number Format also leads to the Format Cells dialog, but only the Number tab is
available. This tab of the dialog is shown in Figure 5-35. This option is valuable when
you want to quickly apply a numeric format, such as Currency or Percentage, to all the
values of a particular measure or column in the data area.

The Sort option has a fly-out menu. This is useful for quickly sorting from smallest
to largest (or vice versa) on a measure. If you have the same measure in multiple
columns (because you have a column in Column Labels), the sort is applied to the rows
based on values in the current column. The Sort fly-out menu is shown in Figure 5-36.

Figure 5-34 Format Cells dialog—Font tab

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 5 9

The Show Values As option also has a fly-out menu. This menu, in itself, has many
options. These are among the most useful and powerful options in a pivot table, and
they can greatly enhance your business intelligence. Consequently, you may want to
follow along with the following practical. The exercises assume you have the Northwind
PowerPivot model. Chapter 1 showed how to build this model on a SQL Server
Northwind source. Chapter 2 showed how to import Northwind from Access, from Excel
(you can download the one for Excel from this book’s Web site), or from a data feed.

Figure 5-35 Format Cells dialog—Number tab

Figure 5-36 Sort fly-out menu

1 6 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

You’ll also need a couple of calculated columns that have been used in a few chapters in
this book. These are the Year column in the Orders table and the Sales Amount column
in the Order Details table. As a reminder, their respective DAX formulas are:

=YEAR(Orders[OrderDate])

='Order Details'[Quantity] * 'Order Details'[UnitPrice]

There are various incarnations of Northwind, so your results may differ from mine.
That’s not too important; what is important is to see how to implement some real BI.
So, here are the step-by-step instructions:

1. Add Year (from Orders) to Column Labels and add Country (from Customers)
to Row Labels.

2. Add Sales Amount (from Order Details) to Values. Right-click its entry in Values
and choose Edit Measure. In the Measure Settings dialog, change the measure’s
name from Sum of Sales Amount to Sales Amount.

3. Drag Sales Amount, again, from the Order Details table to Values and position it
below the first entry. Right-click and choose Edit Measure. Call this second entry
Calculation. Your PowerPivot Field List should look like Figure 5-37, and your
pivot table like Figure 5-38.

Figure 5-37 PowerPivot Field List

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 6 1

4. Right-click on any value in the Calculation column in the pivot table. This opens
the data area context menu. From the menu, choose Show Values As to show its
fly-out menu. This menu is shown in Figure 5-39.

5. From the fly-out, choose % of Grand Total. The result is shown in Figure 5-40;
the screenshot does not show all of the results. According to my version of
Northwind, Germany was a pretty good market in 1997.

6. Repeat the previous two steps, but this time, choose % of Parent Row Total.
Figure 5-41 shows the result. The USA was the top market in 1996, being
responsible for nearly a fifth of all sales. Please note that the Grand Total row at
the bottom is showing 100%.

7. This time, try % Difference From. Unlike the previous two examples, this one
has an ellipsis and opens a dialog, called Show Values As. The dialog is shown in
Figure 5-42.

Figure 5-38 Pivot table

1 6 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 5-39 Show Values As fly-out menu

Figure 5-40 % of Grand Total

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 6 3

8. In this dialog, select Year as the Base Field, and (previous) as the Base Item, before
clicking OK. My result is shown in Figure 5-43. The result of the calculation for
1996 is blank as there were no sales in the previous year, 1995. Sales in Denmark
showed a dramatic increase from 1996 to 1997.

Figure 5-41 % of Parent Row Total

Figure 5-42 Show Values As dialog

1 6 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

9. Often, you may want to see running totals. This next example may prove quite
useful. From the fly-out menu, choose Running Total In. You can right-click
on any value for Calculation, including blanks. Once again, you’ll see the Show
Values As dialog, but, this time, there is only one setting. Make Year the Base
Field, before clicking OK. The result is shown in Figure 5-44. The running total
for Argentina in 1996 is zero, as its sales were blank that year. In general, if it’s a
numeric calculation, blanks are treated as zeros.

10. Let’s have a look at one final example. This time, choose Rank Largest to
Smallest. In the Show Values As dialog, confirm that Country is the Base Field,
and click OK. The result is shown in Figure 5-45. Is our sales team doing well in
Sweden? It’s climbed from number 10 to 8 to 5, in just two years!

Hopefully, these few examples demonstrate a little of the tremendous BI potential
of pivot tables. There are, perhaps, two observations to make. One, you are not limited

Figure 5-43 % Difference From

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 6 5

to just the one calculation at a time. If you want more than one, simply add the relevant
column or measure more times to the Values drop-zone, and perform a different
calculation on each one. Two, if a pivot table has so many possibilities, why do we need
DAX? If these examples are BI, calculations based on DAX formulas are BI on steroids.
For example, if your sales amounts were in different currencies, you could apply a
conversion factor, based on the country name, to convert sales into a common currency
before ranking.

PivotTable Tools/Options Ribbon
The previous section demonstrated how to use a pivot table. This section and the next
few sections discuss a few of the options available for customizing the appearance of
a pivot table. It involves a quick look at a couple of Excel ribbons. We start with the
PivotTable Tools/Options ribbon, which is shown in Figure 5-46. Not every single

Figure 5-44 Running Total In

1 6 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

item on this ribbon (and others) will be explored. Some ribbon buttons and menus have
alternatives discussed elsewhere, or are simply not relevant—for example, OLAP Tools |
Offline OLAP is not going to work. And some are even going to cause confusion—for
example, the Field List button creates a second (non-PowerPivot) field list, and Insert
Slicer creates a slicer that does not appear in the PowerPivot Field List drop-zones.

Figure 5-45 Rank Largest to Smallest

Figure 5-46 PivotTable Tools/Options ribbon

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 6 7

PivotTable Group This is the first group on the ribbon. If you click Options
followed by Options, once again, you open the PivotTable Options dialog. This has
a number of tabs, a couple of which will be examined here. The first tab is Layout &
Format, and is shown in Figure 5-47.

Two useful options on this tab are in the Format section. They are labeled “For Error
Values Show” and “For Empty Cells Show.” You may, for instance, wish empty or blank
cells to display a zero, or perhaps a string such as “NA.”

The next tab, shown in Figure 5-48, is the Totals & Filters tab.
This tab includes a Grand Totals section that allows you to toggle grand totals for

both rows and columns. This functionality is duplicated on the PivotTable Tools/
Design ribbon, where it is, perhaps, more accessible.

The third tab is the Display tab. This tab is shown in Figure 5-49.
A handy (or dangerous!) option on this tab is to suppress the Column Labels and

Row Labels drop-down menus. This option is perhaps easier to access through the
Field Headers button in the Show group of the ribbon.

Figure 5-47 PivotTable Options dialog—Layout & Format tab

1 6 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Actions Group The Clear button has a Clear All option in its drop-down menu.
Clear All removes all the entries from the PowerPivot Field List and is a quick way to
start redesigning your pivot table. It does not delete the pivot table from the worksheet.
The Select button has an Entire PivotTable option in its drop-down. If you follow
this with the correct sequence of clicks, you can not only clear the pivot table, but also
remove the pivot table altogether. The sequence required is Home ribbon | Cells group
Delete button | Delete Cells.

Calculations Group The Fields, Items, & Sets button opens a drop-down menu.
From this menu you can open the New Set dialog. In this dialog you can create new
sets graphically or by writing MDX. A set is a customizable list of values from a column.
You can exploit this to produce preconfigured and prefiltered entries for your pivot
table. This is an advanced topic, and is mentioned in Chapter 12. To implement this, it

Figure 5-48 PivotTable Options dialog—Totals & Filters tab

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 6 9

helps if you have some experience with SSAS cubes and MDX (not DAX). When you
create a set, it appears as a column under a parent node called Sets in the PowerPivot
Field List, and from there it can be added to a pivot table or pivot chart.

Tools Group This group includes the all-important PivotChart button. Use this to
insert a pivot chart that is linked to the current pivot table.

Show Group Please try not to click the Field List button in this group! If you do, you
will end up with two field lists for your pivot table. The +/– Buttons button is a toggle
that disables or re-enables the + and – buttons that you see when you drill down on
Column Labels or Row Labels. If you disable these buttons, you can still expand and
collapse by right-clicking. The Field Headers button hides or shows the Column Labels
and Row Labels captions and drop-downs.

Figure 5-49 PivotTable Options dialog—Display tab

1 7 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

PivotTable Tools/Design Ribbon
This is the second of the two PivotTable Tools ribbons. It is shown in Figure 5-50.

As its name suggests, the Design ribbon is where you set the appearance of a pivot
table. The appearance is quite important, not only from a cosmetic perspective, but also
to hide or show data. If you would like to experiment, place Year in Column Labels,
Country then City in Row Labels, and Sales Amount in Values. Use the Row Labels
drop-down to filter the country and show Argentina and Austria only. Your pivot table
should look something like Figure 5-51. The screenshot is using all the default settings,
before any design changes.

Layout Group The Subtotals button opens a drop-down menu. This menu is shown
in Figure 5-52.

From this menu, try turning off subtotals and then showing them at the bottom. The
final result is shown in Figure 5-53. When you are finished, set subtotals back to display
at the top.

Figure 5-50 PivotTable Tools/Design ribbon

Figure 5-51 Pivot table filtered on Argentina and Austria

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 7 1

If you observe the grand totals at the bottom, they are equal to the total of the
subtotals for Argentina and Austria. Now, from the same drop-down, choose to
include filtered items in totals. The result is shown in Figure 5-54. The grand totals
now include the subtotals for those countries that are filtered out, as well as those for
Argentina and Austria. If you are from an SSAS background, you have just disabled
visual totals. When you are finished, reverse the process, and exclude filtered items.

The Grand Totals button also has a drop-down menu. This is shown in Figure 5-55.
If you turn off grand totals for rows and columns, your pivot table looks like Figure 5-56.

When you are done, re-enable the grand totals for rows and columns.

Figure 5-52 Subtotals drop-down menu

Figure 5-53 Subtotals at the bottom

1 7 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 5-54 Filtered items included in totals

Figure 5-55 Grand Totals drop-down menu

Figure 5-56 Grand Totals turned off for rows and columns

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 7 3

The Report Layout button drop-down is shown in Figure 5-57. From this drop-down,
try tabular layout followed by outline layout. The final result is shown in Figure 5-58. This
format creates extra columns for labels. After you finish experimenting, revert back to the
default compact layout.

The Blank Rows button drop-down is shown in Figure 5-59. Try inserting a blank
line after each item—the result is shown in Figure 5-60. You may want to reset your
pivot table by turning off blank lines when you are finished.

PivotTable Style Options In this group, you might like to try out the four check
boxes. Notice how Banded Rows and Banded Columns amend the overall style of the
pivot table in the PivotTable Styles group.

PivotTable Styles This group has a single button with a drop-down. If you open
the drop-down, and hover the mouse over a style, you have a live preview of the effect
of the style on your pivot table. At the bottom of the drop-down, you have options to
remove your current style or even to create your own styles.

Page Layout and View Ribbons
The Page Layout ribbon has a Sheet Options group and the View ribbon has a Show
group. Check boxes in these groups can be used to suppress gridlines and headings in
the worksheet. Only the View/Show group has an option to hide the Excel formula
bar. You may want to hide items before sharing your worksheet and pivot table. A
perfect way to share your PowerPivot pivot table is to save or publish to PowerPivot for
SharePoint. You can achieve this by clicking File | Save & Send | Save to SharePoint.

Figure 5-57 Report Layout drop-down menu

1 7 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Home Ribbon
On the Home ribbon there is a Format As Table button in the Styles group. You can
use this to alter the overall appearance of the pivot table. If you do so, it may change the
pivot table styles in the PivotTable Tools/Design ribbon.

Also in the Styles group is the Conditional Formatting button. This is a very
powerful and useful feature, so you may want to follow these quick step-by-step
instructions:

1. Start by preparing a pivot table that resembles the one shown in Figure 5-61. Or,
you could easily adapt the steps to your own pivot table. The example shown here
has been filtered to show only Argentina and Austria as countries. In addition, the
Column Labels and Row Labels have been hidden—through the Field Headers
button on the PivotTable Tools/Options ribbon.

2. Click on a subtotal value for any year, for any country. You can even use the blank
entry for Argentina in 1996.

Figure 5-58 Pivot table in outline form

Figure 5-59 Blank Rows drop-down menu

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 7 5

3. Click the Conditional Formatting button in the Styles group of the Home ribbon.
This opens a drop-down menu, which is shown in Figure 5-62.

4. From this drop-down, hover the mouse over Data Bars to see its fly-out menu, as
shown in Figure 5-63.

5. In this fly-out menu click More Rules, at the bottom of the menu, to open the
New Formatting Rule dialog. The dialog is shown in Figure 5-64.

6. Toward the top of this dialog are three option buttons. Turn on the third of
these—this means the conditional formatting will be applied to every subtotal
for every country and every year. Click OK and you should see colored data bars
in the pivot table. In my example, the one for Argentina in 1997 is quite narrow,
while the one for Austria in the same year is much wider. You have quick visual
cues to the size of the values.

Figure 5-60 Pivot table with blank lines

Figure 5-61 Pivot table without conditional formatting

1 7 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

7. Select any cell for the subtotal for a city. Repeat steps 3 through 6, but choose a
different color in the New Formatting Rule dialog—the color for the fill in the
Bar Appearance section of the dialog. Remember to turn on the third option
button, before clicking OK. The final effect can be seen in Figure 5-65, although
the two colors don’t display well in monochrome printing!

Figure 5-62 Conditional Formatting drop-down menu

Figure 5-63 Data Bars fly-out menu

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 7 7

Figure 5-64 New Formatting Rule dialog

Figure 5-65 Pivot table with conditional formatting

1 7 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Pivot Charts
You are probably not surprised to learn that there are many different ways of creating a
pivot chart. How you do so is dictated by your requirements. Do you want a single chart
or multiple charts? Should a chart be linked to an existing pivot table or created from
scratch? Would you like to create a pivot chart and a pivot table at the same time? If
you create them at the same time, how do you link or separate them?

Creating a Pivot Chart
A pivot chart always works in conjunction with a pivot table. If you create a pivot
chart, and it’s not linked to a pivot table, a separate pivot table is created on a separate
worksheet to underlie the pivot chart. You can create a pivot chart, against your current
PowerPivot model, from the PivotTable button on the Excel PowerPivot ribbon, or on
the PowerPivot Home ribbon. When you do so, you can create one, two, or four charts.
If you opt for a single pivot chart, you can decide whether you want a pivot table at the
same time, or not. If you create both a pivot chart and a table, they are independent—
changes to the data in one do not affect the other one. Instead, another pivot table,
linked to the pivot chart, is automatically added to another worksheet. You end up
with one chart and two tables, the pivot table on the same worksheet as the pivot chart
being independent. When you insert more than one chart, each chart has its own
PowerPivot Field List and its own linked pivot table. Each of the latter also has its
own PowerPivot Field List.

Another approach is to start just with a pivot table, using the PivotTable button in
Excel or the PowerPivot window, and adding the pivot chart later. Should you adopt
this approach, then the pivot chart you create can be independent of the pivot table or
linked. To insert a pivot chart that is not linked, use the PivotTable button in Excel or
PowerPivot again. To insert a pivot chart that is linked to your table, use the PivotChart
button in the Tools group on the PivotTable Tools/Options ribbon in Excel.

Linking a pivot chart to an existing pivot table is quite useful for BI. It enables you
to analyze the same scenario graphically and with numbers at the same time. The pivot
chart will have its own PowerPivot Field List, but it will be interdependent with the pivot
table PowerPivot Field List—if you make changes in one field list, it will update the other
one. The next set of step-by-step instructions shows a linked pivot table and chart.

PowerPivot Field List for Pivot Charts
The PowerPivot Field List for a pivot chart is shown in Figure 5-66.

This field list is pretty similar to the field list you see for a pivot table, apart from two
of the six drop-zones—Column Labels and Row Labels. Column Labels has a new title,
Legend Fields (Series). The Row Labels drop-zone has become Axis Fields (Categories).

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 7 9

The Values drop-zone corresponds to the y-axis or value axis of a chart. The Axis Fields
drop-zone corresponds to the x-axis or categories axis of a chart, while the Legend
Fields drop-zone corresponds to the legend or series of a chart. A short practical in the
section “Pivot Chart Menus and Ribbons” demonstrates these areas of a pivot chart.

Slicers for Pivot Charts
Slicers behave the same way for both pivot tables and pivot charts. If the chart and table
are linked, they both share the same slicer. In the situation of a linked table and chart,
adding a slicer results in a shared common slicer for both the table and the chart—the
slicer is not duplicated in the worksheet.

Pivot Chart Menus and Ribbons
A pivot chart has many context menus. Right-clicking on different areas of the chart
leads to different context-sensitive pop-up menus. There are also four main ribbons
dedicated to pivot charts. Rather than list all of the context menus, and their literally

Figure 5-66 PowerPivot Field List for a pivot chart

1 8 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

hundreds of options, one or two will be examined in the course of the following practical.
After the practical there’s a brief introduction to the pivot chart ribbons—if you don’t
have a pivot chart first, you won’t see these ribbons.

To create a pivot chart, based on an existing pivot table:

1. You can use any pivot table as the base for your pivot chart. The example here
has Sales Amount as Values, Year as Column Labels, and Country and City as
Row Labels. You can see my starting point in Figure 5-67. I have hidden the
Column Labels and Row Labels drop-down menus. It’s also filtered to show only
Argentina and Austria.

2. Make sure the focus is in the pivot table and click the PivotChart button in the
Tools group of the PivotTable Tools/Options ribbon. This opens the Insert Chart
dialog, which is shown in Figure 5-68.

3. Accept the clustered column default and click OK. The chart is added to the
current worksheet—you may want to drag it so it’s to the right of the pivot table.
If you don’t, when you remove the filter on Argentina and Austria, the chart may
obscure part of the table. For the purposes of a screenshot only, I have dragged
the chart immediately below the table—this is probably not a good position! The
pivot chart and its linked pivot table are shown in Figure 5-69.

4. Click in both the chart and the table. The field list for each has the same entries
in the drop-zones and two of the drop-zones have different captions. If you make
changes to one, the other is updated automatically. Maybe you could add a slicer
to one (for example, the Category column from the Products table, =RELATED
(Categories[CategoryName]))? The slicer appears in both field lists, but
only once in the worksheet. When you remove the slicer from one field list, it will
disappear from the other.

Figure 5-67 Pivot table for a pivot chart

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 8 1

Figure 5-68 Insert Chart dialog

Figure 5-69 Pivot chart and linked pivot table

1 8 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

5. Right-click on a blank area of the chart and choose Select Data from the
context menu. If that option is not in the context menu, you have right-clicked
somewhere apart from a blank area! Alternatively, you can click the Select Data
button in the Data group of the PivotChart Tools/Design ribbon. Hopefully, you
are looking at the Select Data Source dialog, as shown in Figure 5-70.

6. In this dialog, click the Switch Row/Column button and then OK. Observe the
effect on both the chart and the table. This is called “pivoting”—which is why
pivot reports are called pivot reports. Repeat the previous step and this one to
revert to the original design.

7. Experiment by right-clicking on various areas of the chart. If you right-click on
a button, you can hide the buttons. Right-clicking on a blank area is a quick way
to change a chart type. Right-clicking on the chart itself allows you to format the
plot area. There are hundreds of options! Other areas where you might want
to right-click are the grid lines, the legend, the vertical axis, the horizontal axis,
and a column in the chart. All of these have one or more format options on the
context menu. These options, in turn, open dialogs with hundreds of settings
available.

8. If your chart is still looking reasonable, add Quantity from the Order Details table
to the Values drop-zone, in either field list. Some of the Quantity values are quite
difficult to see in the chart, as they are a lot smaller than the Sales Amount values.
Right-click on the values on the x-axis, and choose Format Axis. This opens the
Format Axis dialogs as shown in Figure 5-71.

Figure 5-70 Select Data Source dialog

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 8 3

9. In this dialog, select the Logarithmic scale check box on the Axis Options page
and click Close. Now the Quantity values are easier to see, as the vertical scale is
logarithmic. Figure 5-72 shows the result.

10. Feel free to experiment. Maybe try changing the chart type. If you want to delete
the pivot chart, left-click to shows its borders, and press delete. The chart will be
deleted, but the original table will remain.

The next section is a very brief look at the four pivot chart ribbons and the Insert
ribbon. Only the most important and pertinent features are mentioned.

Figure 5-71 Format Axis dialog

1 8 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

PivotChart Tools/Design Ribbon
The PivotChart Tools/Design ribbon is shown in Figure 5-73.

Type Group The Change Chart Type button opens the Change Chart Type dialog.
This (apart from its title) is the same as the Insert Chart dialog that you met earlier.
Naturally enough, you can use this to alter the fundamental design of your chart. The
Save As Template button allows you to save a chart as a template—when you create
charts, you can, optionally, base them on previously saved templates (these have a .crtx
file extension).

Figure 5-72 Pivot chart with logarithmic scale

Figure 5-73 PivotChart Tools/Design ribbon

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 8 5

Data Group Switch Row/Column is a really cool button. It flips or “pivots” your
pivot chart (and any linked pivot table) by swapping the Legend Fields and the Axis
Fields. You can do the same through the Select Data button.

Chart Layouts Group The Chart Layouts button in this group has a drop-down
menu. Use this to alter the overall appearance of a chart. This is an easy way to add
titles to your charts and reposition the legend.

Chart Styles Group The Chart Styles button in this group opens a drop-down
menu. This is handy for altering the color scheme of your chart.

PivotChart Tools/Layout Ribbon
The PivotChart Tools/Layout ribbon is shown in Figure 5-74.

Current Selection Group Pivot charts have so many options for design that it’s
easy to create a mess! The Reset to Match Style button can undo a lot of harm and
harmonize your design changes. The Format Selection button is an alternative to right-
clicking within the chart and choosing format options from context menus.

Labels Group This group contains five buttons. These are for showing, hiding, and
positioning the chart legend, labels, and titles.

Axes Group Use this group to control both axes and gridlines. The Axes button has
different options from the Axis button in the Labels group. This one has more to do
with position, the latter has more to do with captions.

Background Group The Background group has buttons to format the plot area,
chart walls, and chart floors, and for rotating a chart.

Figure 5-74 PivotChart Tools/Layout ribbon

1 8 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis Group This group includes a Trendline button. Some of the options for
trend lines are quite advanced—for example, adding exponential trend lines or moving
average trend lines.

PivotChart Tools/Format Ribbon
The PivotChart Tools/Format ribbon is shown in Figure 5-75.

Shape Styles Group The single button, Shape Styles, is context-sensitive. Use this to
format the background of the chart, the legend, or the columns in a column chart.

WordArt Styles Group Use the first drop-down in this group to create amazing
fonts and font colors for the text in your charts.

PivotChart Tools/Analyze Ribbon
The PivotChart Tools/Analyze ribbon is shown in Figure 5-76.

Data Group The Clear button opens a drop-down menu. This menu has two options
for clearing filters on the chart or for clearing all. If you choose Clear All, it will remove
the chart. Please be careful—it will also remove any linked pivot table. If your chart
is linked to a table, then click on the chart and press delete—this removes the chart
without removing the linked table.

Figure 5-75 PivotChart Tools/Format ribbon

Figure 5-76 PivotChart Tools/Analyze ribbon

C h a p t e r 5 : P i v o t Ta b l e s a n d P i v o t C h a r t s : O v e r v i e w 1 8 7

Show/Hide Group The Field Buttons button can be used to selectively remove
buttons from the pivot chart. It also has a Hide All option, which removes all buttons.
To re-establish all buttons, click Hide All again. Try not to use the Field List button—
if you do, you will have a second (and non-PowerPivot) field list for the chart. This
second field list also persists for any linked pivot table.

Insert Ribbon
The Insert ribbon has quite a few groups and buttons. Only the Charts group is
discussed here, as it is the most relevant to chart design.

Charts Group The buttons in this group allow you to change the chart type if the
pivot chart has the focus. It duplicates the functionality of the Change Chart Type
button in the Type group of the PivotChart Tools/Design ribbon. You can also change
the chart type by right-clicking on the pivot chart. If the pivot chart does not have the
focus, the buttons will create a new chart. The diagonal arrow button at the bottom
right opens either the Change Chart Type or the Insert Chart dialog.

That concludes this chapter. You have had an overview of pivot tables and pivot charts,
especially in the context of PowerPivot.

This page intentionally left blank

DAX

Part II

This page intentionally left blank

Fundamental Functions:
Filter, Logical, and
Miscellaneous Functions

Chapter 6

1 9 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is a wide-ranging chapter on some of the fundamental DAX functions.
It includes syntax and examples for all of the Filter functions and all of the
Logical functions. In addition, it discusses some other functions—for example,

those that are often referred to as Information or IS() functions. An example is
ISBLANK(). There is also one Text function, BLANK(), which has been added here
because of its close relationship to ISBLANK(). The Filter functions, in particular, are
extremely powerful. Among other things, they allow you to override the filter context that
a user chooses in a pivot table. They help to display classic BI values such as “percentage of
parent” or “percentage of all.” Some of the examples are shown as calculated columns,
others as measures. With measures, in particular, your results may differ from those
shown in the screenshots, as there are a few different incarnations of Northwind—not
always with the same data!

Key concepts Filtering data, overriding and changing filter context, denormalizing
data, testing data, conditional testing, examining data, dealing with errors

Keywords ALL(), ALLEXCEPT(), ALLNOBLANKROW(), AND(), BLANK(),
CALCULATE(), CALCULATETABLE(), DISTINCT(), EARLIER(), EARLIEST(),
FALSE(), FILTER(), IF(), IFERROR(), ISBLANK(), ISERROR(),
ISLOGICAL(), ISNONTEXT(), ISNUMBER(), ISTEXT(), NOT(), OR(),
RELATED(), RELATEDTABLE(), TRUE(), VALUES()

Preparation Some of the examples in this chapter (and all the other chapters
on DAX functions) refer to calculated columns created earlier on our Northwind
sample. If you don’t have Northwind data in a PowerPivot model, instructions of
how to import Northwind from SQL Server are given in Chapter 1. If you do not
have SQL Server or SQL Server Northwind, you may want to import the Access
version of Northwind—instructions are in Chapter 2. Alternatively, you can
download an Excel version of Northwind from this book’s Web site—if you do,
you’ll need to set up relationships between the tables, and again, Chapter 2 shows
you how. The calculated columns you’ll need, if you want to try out the examples,
were created in Chapter 1 and Chapter 2. As a reminder, they are the Year column
in the Orders table, the Sales Amount column in the Order Details table, and the
Category column in the Products table. Here are their respective DAX formulas:

=YEAR(Orders[OrderDate])
='Order Details'[Quantity] * 'Order Details'[UnitPrice]
=RELATED(Categories[CategoryName])

ALL() 1/7
ALL() can be used to modify the filter context of a measure. Consequently, the
examples over the next few pages concentrate on measures. In particular, ALL() is
frequently used to modify the filter context for a CALCULATE() function. As such,

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 1 9 3

many of the following examples are going to use CALCULATE() as well as ALL().
CALCULATE() itself has a separate entry later in the chapter. Before we investigate
further, here are three measures in this example that are always modified by the filter
context. The first is called Num (for numerator), the second Den (for denominator), and
the third NumOverDen (for numerator divided by denominator). All three measures
have been added to the Order Details table. The Employees LastName column is on
the Row Labels, and there are slicers on Year and Category.
ALL() is a Filter function. The examples are measures. Your figures may differ if you

have a different release of Northwind from the one used here.

Syntax
=SUM('Order Details'[Sales Amount])

=SUM('Order Details'[Sales Amount])

=SUM('Order Details'[Sales Amount])/SUM('Order Details'[Sales Amount])

Result

Analysis
If you slice on Year and/or Category, notice how the numerator and denominator both
change. They reflect the current filter context. As they are both equal, the third measure
is always 1. With measures, it is often a requirement that you allow the numerator and
denominator to behave differently. This is useful for calculating ratios in particular.

1 9 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

By overriding the current filter context, you can return figures for percentage of all
or percentage of parent. The next few formulas investigate how to override the filter
context.

The first two measures could also be written as follows:

=SUMX('Order Details','Order Details'[Sales Amount])

ALL() 2/7
The second and third measures have been changed. They now incorporate the
CALCULATE() function. CALCULATE() enables you to override the filter context—
although not in these examples.
ALL() is a Filter function. The examples are measures. Your figures may differ if you

have a different release of Northwind from the one used here.

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]))

Result

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 1 9 5

Analysis
The introduction of the CALCULATE() function has had no effect on the pivot table.
The slicers still change the numerator and the denominator identically. CALCULATE()
by itself makes no difference. Its real power lies in its ability to accept parameters after
the expression to aggregate sales. These additional parameters are called the filter or
SetFilter parameters. One such parameter includes the ALL() function. The next
formula shows how to use it and what it does.

ALL() 3/7
The ALL() function in the denominator has a table as its own parameter. It can also
accept columns instead of a reference to a table.
ALL() is a Filter function. The examples are measures. Your figures may differ if you

have a different release of Northwind from the one used here.

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]),ALL(Orders))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),ALL(Orders))

Result

1 9 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
To examine the purpose of ALL(), try slicing on Year and/or on Category. The
Category slicer affects both the numerator and the denominator. The Year slicer affects
only the numerator. The denominator continues to show the sales for all dates—
although that figure will vary by product category. The Year column is part of the
Orders table. The ALL() function is saying “consider all rows from the Orders table”;
consequently, all years are included in the calculation. The only filter that is operative is
that on product category, in this example. The ALL() function has overridden the Year
slicer in the denominator. The numerator is still affected by the Year slicer. In the result,
the sales of all categories made by Buchanan in 1998 were about 1.5 percent of the
sales of all categories by all employees for all time. The figures for each employee in the
denominator are the same, as the employee is part of the Orders table (it has a foreign
key of EmployeeID)—and the ALL() function is ignoring all context on that table.

ALL() 4/7
In these examples, the table used in the ALL() function has been changed from Orders
to Products.
ALL() is a Filter function. The examples are measures. Your figures may differ if you

have a different release of Northwind from the one used here.

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]),ALL(Products))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),ALL(Products))

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 1 9 7

Result

Analysis
This time, the Category filter is ignored in the denominator, as it’s part of the Products
table—the table parameter in the ALL() function. The Year slicer, however, does affect
the denominator. In the result, Buchanan’s sales of Beverages were nearly 18 percent of
his sales of all categories. The ALL() function is invaluable for working out percentage
of parent or percentage of total. The figures for each employee in the denominator are
different here, as the employee is not part of the Products table.

ALL() 5/7
In these examples, there are two ALL() functions. Each takes a different table as a
parameter.
ALL() is a Filter function. The examples are measures. Your figures may differ if you

have a different release of Northwind from the one used here.

1 9 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]),ALL(Products),ALL(Orders))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),ALL(Products),ALL(Orders))

Result

Analysis
Neither of the two slicers has any effect on the denominator. Indeed, the employee
context is ignored too, as the employee is part of the Orders table. The denominator
is always going to be the same. However, the year, category, and employee all dictate
the context of the numerator. This is how to show a percentage of the grand total.
Buchanan’s sales of Beverages in 1998 were about 0.11 percent of the total sales of all
categories by all employees for all years.

ALL() 6/7
This is an important variation on the ALL() function. There is only the single ALL()
here, but it has the table that contains the source measure as one of its columns.
ALL() is a Filter function. The examples are measures. Your figures may differ if you

have a different release of Northwind from the one used here.

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 1 9 9

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]),ALL('Order Details'))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),ALL('Order Details'))

Result

Analysis
Superficially, the result is identical to those in the previous examples. If you dig deeper,
there is a fundamental difference. The previous example ignored any context on the
Orders and the Products tables. However, you might add a column from another table
(to a slicer or to Report Filter, Column Labels, or Row Labels), and that could change
the filter context. Our example here will ignore any filters on Sales Amount, which is
part of the Order Details table. Such an approach can give the percentage of the grand
total, no matter how the end user adds table columns to the pivot table and slices and
filters. Unfortunately, we have run out of tables—so with Northwind it’s difficult to
prove! If you revert to the previous example and maybe filter on customer, it would
have no effect as the customer is part of the Orders table (as the CustomerID foreign
key). The same argument applies to the Categories table; there is a foreign key of

2 0 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

CategoryID in the Products table. Maybe you might want to adapt this example and
the previous one to your own data—assuming you have more tables than we have here.

ALL() 7/7
To demonstrate these formulas, you may want to add a ProductName slicer (the column
is in the Products table). The ALL() function now has a column, rather than a table,
parameter.
ALL() is a Filter function. The examples are measures. Your figures may differ if you

have a different release of Northwind from the one used here.

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]),

ALL(Products[ProductName]))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),ALL(Products[ProductName]))

Result

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 0 1

Analysis
There are a lot of interesting things going on here. The Category and ProductName
slicers are cascading—the selection in the former dictates the products shown in
the latter. If you select a product first, it automatically selects the right category and
makes the category the first one in the Category slicer. You can control this behavior
in the Slicer Settings dialog. If you then select a different category, you end up with an
empty pivot table as there is no relationship between the product and an inappropriate
category—you have to remove the filter in the products slicer.

From a DAX perspective, the important change is the column parameter to the
ALL() function. The Category slicer alters the denominator; the ProductName slicer
does not. The SetFilter argument is saying, “implement all filters except those on
product name.” The user can select a product category and the figures in the pivot table
will be updated, both numerator and denominator. When the user selects a product,
only the numerator gets updated. This technique is handy for showing percentage
of parent. In 1997, Buchanan’s sales of Chai were about 8.9 percent of his sales of all
Beverages.

ALLEXCEPT() 1/2
The ALLEXCEPT() function is another function that returns a table and can be used
as a SetFilter argument for the CALCULATE() function. Its own parameters are a
table name followed by one or more column names. Before we look at ALLEXCEPT(),
here are three formulas for a numerator, denominator, and a numerator divided by a
denominator.
ALLEXCEPT() is a Filter function. The examples are measures. Your figures may

differ if you have a different release of Northwind from the one used here.

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]))

2 0 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
All three slicers change the filter context. As you slice, the denominator is constantly
changing too. Please notice that if there are no sales for an employee, the default
behavior is to hide the employee.

ALLEXCEPT() 2/2
Now we introduce ALLEXCEPT() into the measures.
ALLEXCEPT() is a Filter function. The examples are measures. Your figures may

differ if you have a different release of Northwind from the one used here.

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]),

ALLEXCEPT(Products,Products[Category]))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),

ALLEXCEPT(Products,Products[Category]))

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 0 3

Result

Analysis
The Category slicer affects the denominator; the ProductName slicer does not. The
ALLEXCEPT() syntax is asking to override all filters on the Products table, except
that on category. Another way of writing this is to use the ALL() function and then
a comma-separated list of all the columns in the Products table apart from Category.
ALLEXCEPT() is a convenient shorthand when you only want to respect the filter
context of one or two columns in a table, but override it on all the other columns. If
there are no sales for an employee, the employee is still shown—this is because the
denominator is never null.

ALLNOBLANKROW()
For these examples, the ProductName slicer has been removed.
ALLNOBLANKROW() is a Filter function. The examples are measures. Your figures

may differ if you have a different release of Northwind from the one used here.

2 0 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=SUM('Order Details'[Sales Amount])

=CALCULATE(SUM('Order Details'[Sales Amount]),

ALLNOBLANKROW(Employees[LastName]))

=SUM('Order Details'[Sales Amount])/

CALCULATE(SUM('Order Details'[Sales Amount]),

ALLNOBLANKROW(Employees[LastName]))

Result

Analysis
ALLNOBLANKROW() is similar to ALL(). However, ALL() will also return the
Unknown member, a blank row—ALLNOBLANKROW() does not. This extra blank row
is created by PowerPivot where you have a referential integrity violation from a table
on the many side of a relationship. For example, you might have an order assigned to an
employee who does not exist in the Employees table.

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 0 5

AND()
AND() is a function and not an operator. Many of the DAX functions have the same
name as Excel functions and they tend to behave in a similar manner.
AND() is a Logical function. The examples are calculated columns on any table.

Syntax
=AND(1=1,2=2)

=AND(1=1,2=3)

=AND(1=1,AND(2=2,3=3))

=1=1 && 2=2 && 3=4

Result

Analysis
The AND() function tests to see if two conditions are true. If both are true, it returns
TRUE. If either or both are false, it returns FALSE. AND() accepts a maximum of
two conditions, which is different from the Excel AND() function. Should you want
to test more than two conditions, then you must use a nested AND(). This is shown in
the third example. Alternatively, you can replace the AND() function with the double
ampersand (&&) operator as in the last example.

BLANK()
Officially, BLANK() is a Text function. It’s included here because it’s such a
fundamental and important function. It’s also closely related to the ISBLANK() Logical
function, which is shown later in this chapter.
BLANK() is a Text function. The example is a calculated column on the Customers

table.

2 0 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=IF(ISBLANK(Customers[Region]),BLANK() & "No region","Region")

Result

Analysis
BLANK() returns a blank or an empty value. ISBLANK() tests for a blank. In DAX, a
blank is subtly different from a null in most databases (although in SQL Server, you
can change the default behavior of nulls). As this example demonstrates, a blank is
treated as an empty string in text calculations. In arithmetic calculations it is treated as
a zero. Here, the concatenation of a blank to a string does not result in a blank.

CALCULATE()
Earlier in this chapter, there were quite a few examples of CALCULATE(). It is one of
the most frequently used DAX functions. Its importance lies in its ability to change,
ignore, or augment a filter context in a pivot table. We have seen CALCULATE()
used with ALL() and ALLEXCEPT(). Here is another way of entering a SetFilter
argument to the function. The first measure is called Num and the second Den.
CALCULATE() was previously discussed in some depth in Chapter 4.
CALCULATE() is a Filter function. The examples are measures. Your figures may

differ if you have a different release of Northwind from the one used here.

Syntax
=CALCULATE(AVERAGE('Order Details'[Sales Amount]))

=CALCULATE(AVERAGE('Order Details'[Sales Amount]),

Employees[LastName] = "Davolio")

=FORMAT([Num]/[Den],"Percent")

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 0 7

Result

Analysis
The denominator has a fixed context on employee name. All other filters will affect
the denominator, but it will always be for Davolio, no matter how you slice on Year
or Category. The result shows that her average sales were less than half of those of
Buchanan for Beverages in 1996. FORMAT() is a Text function. It converts a value
(numeric or date, for instance) into a string and applies formatting. Please note that,
rather than repeat the first two formulas again in the third one, the measures have been
referred to by name. Like column names, measure names must be enclosed in square
brackets. Because a measure name must be unique within a PowerPivot model, there
is no need to preface the measure name with a table name. By having measures refer
to other measures, you can cut down on the syntax involved. There is also another
shorthand that allows you to omit the CALCULATE() function altogether. The
following three measures give the same result—but the second one is much shorter. It is
using the first measure as a function. The parameter to the function (as it’s a parameter,
it has to be in parentheses) is the SetFilter argument of the CALCULATE()
function. The following three measures can effectively replace the measures that were
originally used in this example:

=CALCULATE(AVERAGE('Order Details'[Sales Amount]))

=[Num](Employees[LastName] = "Davolio")

=FORMAT([Num]/[Den],"Percent")

2 0 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

CALCULATETABLE()
CALCULATE() returns scalar values, while CALCULATETABLE() returns a table. You
can’t display tables in calculated columns nor as measures in a pivot table. As such,
CALCULATETABLE() is used as an input into other functions that expect a table
parameter. The functions that take a table parameter include the X-functions. The
examples here use SUMX(), which adds together the values in the specified column in a
table—the table name must precede the column name in SUMX().
CALCULATETABLE() is a Filter function. The examples are calculated columns on

the Categories table.

Syntax
=SUMX(RELATEDTABLE(Products),Products[UnitsInStock])

=SUMX(CALCULATETABLE(RELATEDTABLE(Products),

Products[Discontinued]=FALSE),Products[UnitsInStock])

=Categories[CalculatedColumn1] - Categories[CalculatedColumn2]

Result

Analysis
CALCULATETABLE() appears in the second calculated column. Like CALCULATE(), it
can accept filter arguments. The filter in the example restricts the returned rows to only
those for products that aren’t discontinued. RELATEDTABLE() returns matching rows
from a table that has a relationship to the current table. In the Products table, there are
a total of 559 units of Beverage products in stock. Of these, 539 are for products that
aren’t discontinued. The third column simply works out the difference between the two
totals.

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 0 9

DISTINCT()
Here there are three measures. Two of them demonstrate possible uses of the
DISTINCT() function. The first measure doesn’t include DISTINCT(), but is shown
for comparison purposes. DISTINCT() returns a table and, therefore, is used as input
into other functions that accept a table as an argument.
DISTINCT() is a Filter function. The examples are measures. Your figures may differ

if you have a different release of Northwind from the one used here.

Syntax
=COUNTA((Orders[CustomerID]))

=COUNTROWS(DISTINCT(Orders[CustomerID]))

=CALCULATE(COUNTROWS(DISTINCT(Orders[CustomerID])),ALL(Orders[Year]))

Result

2 1 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
The first measure counts all of the values of CustomerID in the Orders table. Because
employees are on the rows, this count is filtered by employee. The measure contains a
COUNTA() function. The second measure includes a COUNTROWS() function, which
requires a table input. DISTINCT() returns the table and counts the unique values of
CustomerID—it eliminates duplicates. Again, it is filtered at the employee level. In the
third measure, any filter on year is overridden. In the result, Buchanan had 11 customers
in 1996. Of these, 10 were unique, and his total number of customers over all time is
29. If you subtract the second measure from the first, you can obtain the number of
repeat customers. COUNTA() and COUNTROWS() are discussed in the next chapter.
DISTINCT() is very similar to another function, VALUES(), except the latter may also
return an Unknown member. VALUES() is covered later in this chapter.

EARLIER()
There are two functions, EARLIER() and EARLIEST(), that enable you to compare
column values across rows in PowerPivot tables. These functions have a number of
applications. For example, you might wish to rank each row by some particular value.
Or you may want to compare column values across rows for a particular product. Both
applications are shown in the two calculated columns in this example.
EARLIER() is a Filter function. The examples are calculated columns on the Order

Details table.

Syntax
=MAXX(FILTER('Order Details','Order Details'[ProductID] =

EARLIER('Order Details'[ProductID])),'Order Details'[Quantity])

=COUNTROWS(FILTER('Order Details','Order Details'[Quantity] >

EARLIER('Order Details'[Quantity]))) + 1

Result

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 1 1

Analysis
The two examples are subtly different. The first one has a filter, with an equality test on
the ProductID column. It will iterate through all the entries for a particular product,
and return the maximum quantity ordered for a particular product. It will start on the
first row and find all other rows with the same product. It will then move on to the
second row and repeat the process. In this manner, it will traverse every single row
in the table. The second example does not distinguish between different products.
If it finds a row that has a larger quantity ordered than any other row, then the
COUNTROWS() function will return zero. If we add 1 to this, that row will be ranked in
first place. FILTER() is covered later in this chapter. MAXX() and COUNTROWS() are
discussed in the next chapter. There is an optional second parameter to EARLIER(). If
omitted, it defaults to 1, which means “compare to the immediate previous pass only.”
Theoretically, the maximum number of scans of all the table rows is n2 where n is the
number of rows. You may need to be aware of possible performance implications, when
using EARLIER() and EARLIEST(). Here is another example; it shows how many
employees report to a particular employee:

=COUNTROWS(FILTER(Employees,[ReportsTo]=EARLIER([EmployeeID],1)))

If you try this on the Employees table, you should find that only Fuller and
Buchanan are managers.

EARLIEST()
EARLIEST() is very similar to EARLIER(). The same two examples are shown here,
and the result is the same. EARLIEST() allows for more recursion than EARLIER().
Recursion levels are beyond the scope of this introductory book. However, you might
like to know that EARLIEST() fetches the outermost row context where there are
nested contexts. This can occur where you have multiple, nested aggregation functions.
EARLIEST() is a Filter function. The examples are calculated columns on the Order

Details table.

Syntax
=MAXX(FILTER('Order Details','Order Details'[ProductID] =

EARLIEST('Order Details'[ProductID])),'Order Details'[Quantity])

=COUNTROWS(FILTER('Order Details','Order Details'[Quantity] >

EARLIEST('Order Details'[Quantity]))) + 1

2 1 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
For the first calculated column result, it may be informative to filter on a particular
product and sort descending on Quantity. When that’s done, compare the value in
the calculated column to the Quantity column. The DAX formula is showing the
maximum quantity sold of each product. To understand the second calculated column
result, it’s helpful not to filter on product but to sort ascending on the calculated
column and relate its value to that in the first calculated column. This time, the DAX is
ranking rows by the quantity sold. If there’s a tie, then the next rank value will not be a
consecutive number.

FALSE()
EARLIER() and EARLIEST() are not the easiest of DAX functions! FALSE() is a
little more straightforward.
FALSE() is a Logical function. The example is a calculated column on the

Customers table.

Syntax
=IF(ISBLANK(Customers[Region]),FALSE(),TRUE())

Result

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 1 3

Analysis
FALSE() quite simply returns a value of FALSE. Here, it’s shown in conjunction with
the IF() and ISBLANK() functions. Both of those functions are coming up shortly, in
this chapter.

FILTER()
FILTER() returns a table and is consequently used as an input to another function. Its
main purpose is to return a set of rows that meet a specified condition. FILTER() is
shown here in calculated column examples. It can also be passed into a CALCULATE()
function as a SetFilter argument.
FILTER() is a Filter function. The examples are calculated columns on the

Categories table.

Syntax
=SUMX(FILTER(RELATEDTABLE(Products),Products[UnitPrice]>0),

Products[UnitsInStock])

=SUMX(FILTER(RELATEDTABLE(Products),Products[UnitPrice]>30),

Products[UnitsInStock])

=SUMX(FILTER(RELATEDTABLE(Products),Products[UnitPrice]>30 &&

Products[Discontinued]=TRUE()),Products[UnitsInStock])

=SUMX(FILTER(RELATEDTABLE(Products),Products[UnitPrice]>30 ||

Products[Discontinued]=TRUE()),Products[UnitsInStock])

Result

Analysis
The SUMX() function is operating on the UnitsInStock column in the Products table.
The RELATEDTABLE() function is returning all products that match the current
product category. The double ampersand (&&) means AND, while the double pipe

2 1 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

symbol (||) means OR. If you compare the second and third columns, you can see that
all Meat/Poultry products that cost more than 30 are discontinued. RELATEDTABLE()
follows later in this chapter. SUMX() is mentioned in the next chapter (Chapter 7) and
in a later chapter on Math & Trig functions (Chapter 11).

IF()
The IF() function tests a condition. If the condition is true, then the first value is
returned; otherwise, the second value is returned. Both return values must be the same
data type—the third example here results in an error. You can nest the IF() function to
implement complex branching.
IF() is a Logical function. The examples are calculated columns on the Customers table.

Syntax
=IF(ISBLANK(Customers[Region]),FALSE(),TRUE())

=IF(ISBLANK(Customers[Region]),

IF(Customers[City]="London","London",Customers[Country]),

Customers[Region])

=IF(ISBLANK(Customers[Region]),FALSE(),Customers[Region])

Result

Analysis
The second calculated column shows the Region, if there is one. If not, it shows the
Country—apart from the city of London, where the city name is used instead of the
country name. SSAS developers may recognize a ragged hierarchy here.

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 1 5

IFERROR()
Like the IF() function, the IFERROR() function returns one of two values. Also,
like the IF() function, the two values must be of the same data type—otherwise,
IFERROR() generates an error itself. Unlike IF(), the first of the two return values
is itself a test. If the first value is going to result in an error, then the second value is
returned instead.
IFERROR() is a Logical function. The examples are calculated columns on the

Products table.

Syntax
=Products[UnitsInStock]/Products[UnitsOnOrder]

=IFERROR(Products[UnitsInStock]/Products[UnitsOnOrder],0)

Result

Analysis
The first calculated column is going to give one of two possible errors for certain
rows. Dividing a zero by zero gives NaN (not a number), while dividing a non-zero by
zero results in Infinity. IFERROR() is a convenient shorthand for the IF() function
together with the ISERROR() function. The latter is shown later in this chapter.

ISBLANK()
ISBLANK() tests for blank values. We met it earlier, when looking at the BLANK()
Text function.
ISBLANK() is an Information function. The example is a calculated column on the

Customers table.

2 1 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=IF(ISBLANK(Customers[Region]),BLANK() & "No region","Region")

Result

Analysis
ISBLANK() returns either TRUE or FALSE. Here, it’s combined with the IF()
function. Please note that the concatenation of a string with BLANK() does not give a
blank.

ISERROR()
All of the IS() family of functions return TRUE or FALSE. They are often used in
conjunction with IF(). Here, we are testing for an error condition.
ISERROR() is an Information function. The examples are calculated columns on the

Products table.

Syntax
=Products[UnitsInStock]/Products[UnitsOnOrder]

=ISERROR(Products[UnitsInStock]/Products[UnitsOnOrder])

=IF(ISERROR(Products[UnitsInStock]/Products[UnitsOnOrder]),0,

Products[UnitsInStock]/Products[UnitsOnOrder])

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 1 7

Result

Analysis
The third example combines ISERROR() with IF(). You might want to compare this
to the IFERROR() function. As a reminder, NaN means “not a number.”

ISLOGICAL()
ISLOGICAL() is another IS() or Information function. It tests for a TRUE or
FALSE value and returns TRUE or FALSE.
ISLOGICAL() is an Information function. The example is a calculated column on

the Products table.

Syntax
=ISLOGICAL(Products[Discontinued])

Result

2 1 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
The Discontinued column in the Products table has a data type of TRUE/FALSE.

ISNONTEXT()
ISNONTEXT() has its converse in ISTEXT(). Please be careful with ISNONTEXT()—
if it returns TRUE, it does not necessarily mean the column contains numbers. If
the column has a data type of TRUE/FALSE or contains only blanks, for example,
ISNONTEXT() will show TRUE. If you want to test specifically for a number, use
ISNUMBER() instead.
ISNONTEXT() is an Information function. The example is a calculated column on

the Products table.

Syntax
=ISNONTEXT(Products[UnitPrice])

Result

Analysis
The UnitPrice column in the Products table has a data type of Currency. You may
want to test the data type of a column before attempting manipulation of the data. The
Math & Trig functions, for example, don’t operate on text values.

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 1 9

ISNUMBER()
ISNUMBER() checks whether a column contains numeric data.
ISNUMBER() is an Information function. The example is a calculated column on the

Products table.

Syntax
=ISNUMBER(Products[UnitPrice])

Result

Analysis
Although the UnitPrice column in the Products table has a data type of Currency, it
still qualifies as a numeric column.

ISTEXT()
This is the last of the IS() or Information functions. Again, it simply returns TRUE
or FALSE.
ISTEXT() is an Information function. The example is a calculated column on the

Products table.

Syntax
=ISTEXT(Products[UnitPrice])

2 2 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
This is a useful test to perform before trying to apply some of the Text functions to the
values in a column.

NOT()
NOT() changes TRUE to FALSE and the reverse.
NOT() is a Logical function. The examples are calculated columns on the Products

table.

Syntax
=IF(Products[UnitPrice] < 50, "Cheap","Expensive")

=IF(NOT(Products[UnitPrice] > 50), "Cheap","Expensive")

Result

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 2 1

Analysis
Mishi Kobe Niku is quite pricey!

OR()
OR(), as opposed to AND(), will result in TRUE if either of the two conditions is true.
AND() only returns TRUE if both conditions are true.
OR() is a Logical function. The examples are calculated columns on any table.

Syntax
=OR(1=1,2=3)

=1=1 || 2=2 || 3=4

Result

Analysis
OR() accepts a maximum of two tests, which is different from the equivalent Excel
OR() function. If you want more, then you can nest an OR() within an OR()—or you
can use the double pipe (||) symbol, as shown in the second example.

RELATED()
RELATED() is one of the most popular DAX functions. It’s going to help you
denormalize your data and make browsing pivot tables so much easier and more
intuitive. RELATED() was discussed in some detail in Chapter 4.

2 2 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

RELATED() is a Filter function. The first two examples are calculated columns on
the Orders table. The third example is a calculated column on the Order Details table,
the result of which is not shown in the screenshot.

Syntax
=RELATED(Employees[LastName])

=RELATED('Order Details'[Quantity])

=RELATED(Employees[LastName])

Result

Analysis
The first example returns the employee responsible for a particular order. It’s getting
data from another table. In order for this to work, you must have defined a relationship
between the two tables involved. Setting up relationships was examined in Chapter 2
and in Chapter 3. The RELATED() function must appear in the table on the many side
of a relationship—it’s doing a lookup of a value. The second example fails because, this
time, the Orders table is on the one side of the relationship. The third example will
work—it’s jumping tables. The starting point is the Order Details table. This is related
to the Orders table, which, in turn, is related to the Employees table. The net effect is to
show the employee responsible for each order line.

RELATEDTABLE()
RELATED() must appear in a table on the many side of a relationship. RELATEDTABLE()
can appear in either the many-side or the one-side table in a relationship. Generally, it is
more useful on the one side. As it returns a table, it can’t be used directly. Instead, it’s fed

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 2 3

into another DAX function that accepts a table as a parameter. The examples here pass
the rows returned by RELATEDTABLE() into the COUNTROWS() function.
RELATEDTABLE() is a Filter function. The first example is a calculated column on

the Employees table. The second example is a calculated column on the Products table.
Only the result from the first example is shown in the screenshot.

Syntax
=COUNTROWS(RELATEDTABLE(Orders))

=COUNTROWS(RELATEDTABLE(Employees))

Result

Analysis
The first example is the more useful. The RELATEDTABLE() function is in a calculated
column on the one side of a direct relationship. The outcome is a count of the number
of orders for each employee. The second example (result not in screenshot) shows the
number of employees responsible for each order line. COUNTROWS() is covered in the
next chapter.

TRUE()
The function TRUE() returns the value TRUE.
TRUE() is a Logical function. The example is a calculated column on the Customers

table.

2 2 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=IF(ISBLANK(Customers[Region]),FALSE(),TRUE())

Result

Analysis
We’ve met this example a few times. For instance, it was used earlier in this chapter for
the FALSE() function.

VALUES()
This is the final function in this chapter. Please note that VALUES() can’t be used
directly to give a value for a calculated column or a measure, as it returns a table of rows.
Don’t confuse VALUES() with VALUE()—the latter is a Text function for converting
strings into numbers.
VALUES() is a Filter function. The examples are measures. Your figures may differ if

you have a different release of Northwind from the one used here.

Syntax
=COUNTROWS('Order Details')

=COUNTROWS(DISTINCT('Order Details'[ProductID]))

=COUNTROWS(VALUES('Order Details'[ProductID]))

=CALCULATE(COUNTROWS(VALUES('Order Details'[ProductID])),

ALL('Order Details'))

=[Measure 3]/[Measure 4]

C h a p t e r 6 : F u n d a m e n t a l F u n c t i o n s 2 2 5

Result

Analysis
These are fairly complex examples with which to finish the chapter. The first example
shows how many order lines (as opposed to orders) are attributable to each employee.
If you look at the Order Details table in the PowerPivot window, you can see there are
2155 rows, which matches the Grand Total (to see that figure, remove any slice on Year
or Category). The second and third examples tell us how many distinct products were
sold by each employee. The fourth calculated column is showing the total number of
distinct products in all the order lines. Because it’s using ALL('Order Details'),
it overrides all filter contexts including that of employee. The final calculated column
is a “percentage of all” column—the denominator is fixed. In 1996, Buchanan had five
order lines for products belonging to the Beverages category. Of these, four were unique
products—in other words, two of the order lines must have been for the same product.
The total number of unique products (regardless of category) appearing in order lines
is 77. If you prefer a “percentage of parent” answer showing the total number of unique
products by category, change the fourth formula to this:

=CALCULATE(COUNTROWS(VALUES('Order Details'[ProductID])),ALL('Orders'))

2 2 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you try this, in 1996, Buchanan sold 4 out of a possible 12 products from the
Beverages category.

Like DISTINCT(), VALUES() eliminates duplicate values. Unlike DISTINCT(),
it will include the Unknown member if there is one. Unknown members can occur
as a result of referential integrity violations between related tables. This is possible if
the data from one table is refreshed independently of the data in a related table. In
our sample Northwind data, there are no Unknown members, so the second and third
examples presented give the same answers. CALCULATE() and ALL() are examined
earlier in this chapter. COUNTROWS() is covered in the next chapter.

Aggregate Functions:
Statistical Functions
and SUM()/SUMX()
Functions

Chapter 7

2 2 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The aggregate functions include the Statistical functions and both SUM() and
SUMX() from the Math & Trig functions. Such functions often result in
numeric values. The functions can be used equally well as calculated columns

or as measures. If used as calculated columns, they are often added to the Values drop-zone
in the PowerPivot Field List and displayed in the central data area of a pivot table.
They are ideally suited for producing totals and subtotals. In this chapter, the alphabetical
order of the functions has not been observed completely. For example, AVERAGEX()
appears before AVERAGEA(), but after AVERAGE()—this is to highlight the difference
between a base column function, such as AVERAGE(), and its table function equivalent,
AVERAGEX(). AVERAGEA(), another column function, then follows. In general, the
X-functions, for instance, AVERAGEX(), accept a table argument. The base functions,
like AVERAGE(), accept a column argument, and they operate on numeric or date
values. The A-functions, for example, AVERAGEA(), also accept a column argument, but
they usually work on every value in a column, even text and blank values.

Key concepts Aggregating data, averaging data, counting rows, summing data,
finding minimum and maximum values

Keywords AVERAGE(), AVERAGEX(), AVERAGEA(), COUNT(), COUNTX(),
COUNTA(), COUNTAX(), COUNTBLANK(), COUNTROWS(), MAX(), MAXX(),
MAXA(), MIN(), MINX(), MINA(), SUM(), SUMX()

AVERAGE()
AVERAGE() finds the mean of all the numeric values in the specified column. The
average of date values is returned as a serial number.

This example is a calculated column in the Order Details table.

Syntax
='Order Details'[Sales Amount] - AVERAGE('Order Details'[Sales Amount])

Result

C h a p t e r 7 : A g g r e g a t e F u n c t i o n s 2 2 9

Analysis
The example calculates the deviation from the mean for the sales on each order line.
Blank or TRUE/FALSE values are ignored. Zeros count toward the total number of
rows. You can’t calculate AVERAGE() on a column that contains text. The AVERAGE()
function only accepts a column—the following expression is invalid as an input:

=AVERAGE('Order Details'[Quantity] * 'Order Details'[UnitPrice])

AVERAGEX()
This is an X-function. It takes a table as its first parameter—if you try a column instead,
you’ll receive an error. The second parameter is the column, or expression with scalar
result, that you wish to average.

This example is a calculated column in the Employees table.

Syntax
=AVERAGEX(RELATEDTABLE(Orders),Orders[Freight])

Result

Analysis
Here, RELATEDTABLE() is used to generate a table, which is then passed into
AVERAGEX() as the first argument. The second argument causes AVERAGEX() to
calculate the mean freight charge of all orders gained by each employee. Michael
Suyama has the lowest freight charges.

2 3 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

AVERAGEA()
Here we see the first of the A-functions. Unlike the X-functions, the A-functions
require a column as their first parameter. Also, unlike the X-functions, the A-functions
take only a single parameter. In those respects, AVERAGEA() is similar to the base
function, AVERAGE(). However, there is a major difference between the base functions
and the A-functions—the A-functions can cope with non-numeric and non-date data.

These examples are calculated columns in the Products table.

Syntax
=AVERAGE(Products[Discontinued])

=AVERAGEA(Products[Discontinued])

Result

Analysis
The Discontinued column has a data type of TRUE/FALSE. The first example,
AVERAGE(), generates an error. AVERAGEA() does not give an error. A TRUE counts
as 1 and a FALSE as 0. A text value would also count as 0. If you multiply the result
here by 77 (the total number of rows), the answer is 8. This indicates that 8 products are
discontinued. The COUNTROWS() function would give you the total number of rows in
a table. You could achieve the same answer (8) with the following formulas:

=COUNTROWS(FILTER(Products,[Discontinued]=TRUE))

=COUNTAX(FILTER(Products,[Discontinued]=TRUE),[Discontinued])COUNTAX()

and COUNTROWS() are examined in this chapter, and FILTER() was discussed

in the last chapter.

C h a p t e r 7 : A g g r e g a t e F u n c t i o n s 2 3 1

COUNT()
COUNT() is a base aggregate function. Just as with AVERAGE(), there are A-function
and X-function variations. In addition, there is also an AX-function version as well.

This example is a calculated column in the Order Details table.

Syntax
=COUNT('Order Details'[Discount])

Result

Analysis
The result is 2155. This does not necessarily mean there are 2155 rows in the table.
Rather, it indicates that 2155 rows contain a number (or date) in the specified column.
To return the number of rows in the table, COUNTROWS() is better, as COUNT() does
not count non-numeric or non-date values. In this case, every row in the Discount
column contains a number, so it does represent the total count of the rows in the table.

COUNTX()
This is the X-function version of the base COUNT() function.

This example is a calculated column in the Employees table.

Syntax
=COUNTX(RELATEDTABLE(Orders),Orders[EmployeeID])

2 3 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The answer shows how many orders were attributable to each employee. It works as the
EmployeeID column is numeric. COUNTX() also works on dates. If you want to count
non-numeric or non-date values in a table, try COUNTAX(). If you wish to count the
same in a column, use COUNTA(). These two functions are covered next.

COUNTA()
This time, it’s the A-function version of COUNT().

These examples are calculated columns in the Products table.

Syntax
=COUNT(Products[Discontinued])

=COUNTA(Products[Discontinued])

Result

C h a p t e r 7 : A g g r e g a t e F u n c t i o n s 2 3 3

Analysis
The Discontinued column has a data type of TRUE/FALSE. Consequently, the first
example results in an error as it uses COUNT(). But COUNTA() is rather more successful.

COUNTAX()
COUNTAX() is the AX-function variety of COUNT(). The A means count non-numeric
and non-date values, and the X means count a table-column rather than just a column.

These examples are calculated columns in the Products table.

Syntax
=COUNTX(Products,Products[Discontinued])

=COUNTAX(Products,Products[Discontinued])

Result

Analysis
The first formula fails as the Discontinued column is a TRUE/FALSE column. The
second formula produces the same result as the following formula:

=COUNTA(Products[Discontinued])

COUNTA() is simpler. COUNTAX() is more powerful, as you can apply it to another
related table (using RELATEDTABLE()) or to a filtered table (using FILTER()).

2 3 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

COUNTBLANK()
This is yet another counting function. COUNTBLANK(), as its name suggests, counts the
blank values in a column.

This example is a calculated column in the Customers table.

Syntax
=COUNTBLANK(Customers[Region])

Result

Analysis
There are 60 customers that have a blank entry in the Region column. Zeros are not
blanks, and are not counted.

COUNTROWS()
Here we have the last of the counting functions in this chapter.

These examples are calculated columns in the Employees table.

Syntax
=COUNTROWS(Orders)

=COUNTX(RELATEDTABLE(Orders),Orders[EmployeeID])

=(Employees[CalculatedColumn2] / Employees[CalculatedColumn1]) * 100

C h a p t e r 7 : A g g r e g a t e F u n c t i o n s 2 3 5

Result

Analysis
Davolio had nearly 15 percent of the orders. COUNTROWS() tells you the total number of
rows in the Orders table. COUNTX() tells you the total number of rows in the Orders table
in the row context of the current employee. The second example could be replaced with

=COUNTROWS(RELATEDTABLE(Orders))

However, COUNTX() is more flexible, as it lets you specify a specific column to count.

MAX()
MAX() returns the maximum value in a column.

This example is a calculated column in the Orders table.

Syntax
=MAX(Orders[Freight])

Result

2 3 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
MAX() can handle numbers or dates. For other data types, use MAXA(). The result
shows the largest freight charge for any order.

MAXX()
The X-function version of MAX(), MAXX(), returns the maximum numeric or date
value in a table column. The column itself can be the result of an expression, as shown
in this example. There is no MAXAX() function.

This example is a calculated column in the Orders table.

Syntax
=MAXX(RELATEDTABLE('Order Details'),

'Order Details'[Quantity] * 'Order Details'[UnitPrice])

Result

Analysis
This example uses an expression for the second, column, parameter of MAXX(). You
could also reference either a regular or a calculated column—here you might try the
Sales Amount calculated column. The result shows the maximum sales amount from
the order lines for each order.

MAXA()
MAXA() can cope with values that are neither numeric nor dates.

These examples are calculated columns in the Products table.

C h a p t e r 7 : A g g r e g a t e F u n c t i o n s 2 3 7

Syntax
=MAX(Products[Discontinued])

=MAXA(Products[Discontinued])

Result

Analysis
The first example is for MAX()—it causes an error. The second example uses MAXA()
and handles the TRUE/FALSE Discontinued column. A value of TRUE counts as 1,
while blanks, text, and FALSE count as zero.

MIN()
MIN() works on numeric or date columns.

This example is a calculated column in the Orders table.

Syntax
=MIN(Orders[Freight])

Result

2 3 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
The minimum freight charge for any order is only two cents (or two pence). The
currency unit is determined by the regional settings in Control Panel and by the
settings in the Formatting group of the PowerPivot Home ribbon.

MINX()
MINX() is the X-function table version of MIN().

This example is a calculated column in the Orders table.

Syntax
=MINX(RELATEDTABLE('Order Details'),'Order Details'[Quantity] * 'Order

Details'[UnitPrice])

Result

Analysis
The formula returns the minimum sales amount of all the order lines belonging to a
particular order.

MINA()
Here we have the A-function variation on the MIN() function.

These examples are calculated columns in the Products table.

Syntax
=MIN(Products[Discontinued])

=MINA(Products[Discontinued])

C h a p t e r 7 : A g g r e g a t e F u n c t i o n s 2 3 9

Result

Analysis
The first example results in an error as the Discontinued column values are neither
numeric nor dates. In the second example, TRUE is counted as 1 and FALSE as zero.
MINA(), therefore, returns zero.

SUM() 1/2
This function, SUM(), and its related function SUMX(), are officially Math & Trig
functions. You can verify this in the Insert Function dialog. However, they are also
introduced in this chapter as they do perform an aggregation.

This example is a calculated column in the Order Details table.

Syntax
=SUM('Order Details'[Sales Amount])

Result

2 4 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
The formula is working out the total value of all sales in the Order Details table. You
might divide into the Sales Amount calculated column to ascertain the percentage
contribution of each order line to overall sales.

SUM() 2/2
It probably bears reiterating that DAX functions and formulas can (in most cases) be
used in either calculated columns or measures. In the previous example, SUM() was a
calculated column.

This example is a measure.

Syntax
=SUM('Order Details'[Sales Amount])

Result

Analysis
The pivot table in the result depicts total sales by product category, and the grand total
for sales for all categories.

SUMX()
SUMX() is the X-function version of SUM(). It requires a table as its first parameter.

This example is a calculated column in the Categories table.

C h a p t e r 7 : A g g r e g a t e F u n c t i o n s 2 4 1

Syntax
=SUMX(RELATEDTABLE(Products),Products[UnitsInStock])

Result

Analysis
The first argument must be a table or another function that returns a table. The second
argument is the column you wish to aggregate. Here, the result shows the total number
of stock items for each product category.

This page intentionally left blank

Date & Time Functions
1/2: Basic Functions

Chapter 8

2 4 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

For the purpose of clarity, the Date & Time functions in DAX have been divided
into two chapters. This is the first of those two chapters and deals with the more
basic date and time functions. The next chapter is devoted to a group of Date

& Time functions that are often referred to as time intelligence functions. The basic
functions are often simpler and more forgiving. The time intelligence functions usually
require that you have put some thought into how your dates are stored in the PowerPivot
model. The emphasis in this chapter is on parsing, manipulating, and returning dates.
The basic functions generally return dates and times. The time intelligence functions
generally return measures or values associated with dates and times.

Please note that the display of dates and times is determined by your regional
settings in Control Panel and the choices you make in the Formatting group of the
PowerPivot Home ribbon. Dates and times displayed in a pivot table can also be
customized to your liking. PowerPivot uses a special date data type, unlike Excel itself,
which conforms to the Gregorian calendar.

Also, please be aware that there are different incarnations of the Northwind database.
They often contain slightly different dates, and your results (if they use the Northwind
Orders table and OrderDate column) may not always match the results shown in
screenshots in this chapter.

Key concepts Converting numbers and text to dates, parsing dates,
manipulating dates, returning the current date and time

Keywords DATE(), DATEVALUE(), DAY(), EDATE(), EOMONTH(), HOUR(),
MINUTE(), MONTH(), NOW(), SECOND(), TIME(), TIMEVALUE(), TODAY(),
WEEKDAY(), WEEKNUM(), YEAR(), YEARFRAC()

DATE()
DATE() accepts a comma-separated list of three numbers (year, month, day) and
returns a date, with a data type of date. You can also have three strings, provided the
strings can be converted into appropriate numbers.

The examples are for calculated columns in any table.

Syntax
=DATE(2001,12,31)

=DATE(01,12,31)

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 4 5

Result

Analysis
The result shown is from the first formula. If you recall, you can control the formatting
of dates and times. To do so, use the Format drop-down menu in the Formatting group
of the Home ribbon in PowerPivot. Please be careful with DATE(); the second example
results in 1901, not 2001. It’s probably a good idea to display four-digit years. DATE()
accepts numbers as inputs. If your input is one string, use DATEVALUE() instead, as
follows:

=DATEVALUE("2001/12/31")

However, DATE() will work with three separate strings (it implicitly converts them
to numbers), as here:

=DATE("2001","12","31")

DATEVALUE() is covered next in this chapter.

DATEVALUE()
Like DATE(), DATEVALUE() returns a date as a date data type. Unlike DATE(), it
takes a string or a text column as its single parameter. The string or text column must
conform to certain rules—the following example fails.

The examples are for calculated columns in any table.

Syntax
=DATEVALUE("2001/12/31")

=DATEVALUE("20011231")

2 4 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The first formula is successful and the result is shown in the screenshot. The second one
gives an error. You can use Text functions to manipulate the string into a valid format
for DATEVALUE(), or alternatively, try Text functions and the DATE() function:

=DATE(LEFT("20011231",4),MID("20011231",5,2),RIGHT("20011231",2))

LEFT(), MID(), and RIGHT() are Text functions and are covered in Chapter 10.

DAY()
DAY() returns the day of the month. This function and some of the other Date &
Time functions are useful for creating date drill-down columns in your pivot tables.

The example is for a calculated column in the Orders table.

Syntax
=DAY(Orders[OrderDate])

Result

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 4 7

Analysis
In this formula, DAY() is parsing a regular column of data type date. DAY() can also
accept a text parameter:

=DAY("2001/12/31")

EDATE()
If you need a date that is so many months in the future (or the past), EDATE() is the
function to use. For dates in the past, make the second parameter negative.

The example is for a calculated column in the Orders table.

Syntax
=EDATE(Orders[OrderDate],6)

Result

Analysis
Your business rule may be that orders must ship within six months of the order date.
You might use this formula and compare it to the actual ShippedDate column in the
Orders table. That way, you can see that you shipped on time (or not!).

EOMONTH()
This EOMONTH() function is a handy alternative to EDATE(). Not only does it jump
into the future (or the past), but it then returns the last day of the month in that future
(or past) date. This is an ideal function for working out maturity dates.

The example is for a calculated column in the Orders table.

2 4 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=EOMONTH(Orders[OrderDate],6)

Result

Analysis
If you compare the result to that of the EDATE() one in the previous example, you’ll see
that EOMONTH() is giving the month-end dates—EO means EndOf.

HOUR()
HOUR() simply returns a number between 0 and 23. It accepts a date column, a time
value, or a string as its single input parameter.

The first example is for a calculated column in any table. The second example is for a
calculated column in the Orders table.

Syntax
=HOUR(NOW())

=HOUR(Orders[OrderDate])

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 4 9

Result

Analysis
The result shown is from the first example. Your result, of course, may be different.
NOW(), which is described later in this chapter, returns the current date and time.
The second example returns zero—that’s because the OrderDate column has no time
component, so it defaults to midnight. HOUR() can also work on strings:

=HOUR("2001/12/31 5:19 PM")

MINUTE()
As HOUR() gives the hour, MINUTE(), unsurprisingly, gives the minute, between 0 and 59.

The example is for a calculated column in any table.

Syntax
=MINUTE(NOW())

Result

2 5 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
Again, your result may vary from the screenshot here. MINUTE() can also work with a
string parameter:

=MINUTE("2001/12/31 5:19 PM")

MONTH()
MONTH() returns the month from a date—as a number, between 1 and 12, not as a
month name.

The example is for a calculated column in the Orders table.

Syntax
=MONTH(Orders[OrderDate])

Result

Analysis
MONTH() also operates on a suitably formatted string:

=MONTH("2001/12/31 5:19 PM")

=MONTH("2001/12/31")

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 5 1

The calculated column that contains the returned month number is often added to
Column Labels or Row Labels in a pivot table. It’s frequently combined with a year
column and a quarter column to give drill-down on dates. There is, however, a potential
drawback—the months appear as numbers rather than month names. Many users prefer
to see the month names. Unfortunately, there is no DAX function in this first release of
PowerPivot to give you the month name directly. There are at least two solutions, if the
month name is not already part of your source data. One, you can write your own DAX
formula to generate the month name. It might begin something like the following:

=IF(MONTH(Orders[OrderDate])=1,"January",

IF(MONTH(Orders[OrderDate])=2,"February",

and so on. Alternatively, you could do this:

=IF(MONTH(Orders[OrderDate])=1,"Jan",

IF(MONTH(Orders[OrderDate])=2,"Feb",

and so on.
Two, you can write a query when you import the data, if it’s from a suitable source.

For a SQL Server source, you might try one of these:

select datename(mm,orderdate) as MonthName from orders

select left(datename(mm,orderdate),3) as MonthName from orders

This, in turn, raises another interesting problem. If you add the month name to Row
Labels or Column labels in a pivot table, the month names are sorted alphabetically
(April, August, and so on). Fortunately, there is a GUI solution. First, right-click on
a month name in the pivot table. Choose Sort, More Sort Options to open the Sort
dialog. In this dialog, click More Options to open the More Sort Options dialog. In
this second dialog, under AutoSort, turn off Sort Automatically Every Time the Report
Is Updated. Then, from the First Key sort order drop-down, choose the entry beginning
Jan or January (whichever is appropriate). Click OK twice to exit the two dialogs.
Right-click once again on the month name in the pivot table, and choose Sort, followed
by Sort A to Z.

NOW()
NOW() returns the current date and time. This is in contrast with TODAY(), which only
returns the date.

The example is for a calculated column in any table.

2 5 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=NOW()

Result

Analysis
If you refresh the data in the table containing the column, the return value of NOW()
will be updated. A refresh causes a recalculation. The same applies if you are in Manual
Calculation mode and you choose Calculate Now. The TODAY() function appears later
in this chapter.

There Is No QUARTER()
Partly in order to conform to existing Excel functions, there is no QUARTER() function
in DAX. This example presents just one of a few possible solutions to extract the
quarter from a date.

The example is for a calculated column in the Orders table.

Syntax
=IF(MONTH(Orders[OrderDate])<=3,1,IF(MONTH(Orders[OrderDate])<=6,2,

IF(MONTH(Orders[OrderDate])<=9,3,4)))

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 5 3

Result

Analysis
You might also try the CONCATENATE() function to prepend the letter “Q” to the
quarter number. CONCATENATE() is a Text function and is discussed in Chapter 10. Or
you might want to try this approach:

=IF(MONTH(Orders[OrderDate])<=3,"Q1",

IF(MONTH(Orders[OrderDate])<=6,"Q2",IF(MONTH(Orders[OrderDate])<=9,"Q3","

Q4")))

As an alternative to a DAX formula, you may want to return the quarter as part of
an import query. Here are two possible SQL Server solutions:

select datepart(qq,orderdate) as MonthName from orders

select 'Q' + cast(datepart(qq,orderdate) as char) as MonthName

from orders

SECOND()
SECOND() operates on date columns or on strings to give the second, from 0 to 59.

The example is for a calculated column in any table.

Syntax
=SECOND("2001/12/31 5:19:45 PM")

2 5 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
If you try this on the OrderDate column in the Orders table, it will result in zeros. The
OrderDate column is the date only, without any time element. As such, it defaults to
midnight exactly—down to the second.

TIME()
TIME() converts a comma-separated list of numbers into a time. All three of the
examples have the same result.

The examples are for calculated columns in any table.

Syntax
=TIME(17,0,0)

=TIME(41,0,0)

=TIME(0,1020,0)

Result

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 5 5

Analysis
You may need to change the format to see the same result. The second function
subtracts 24 from 41 to give 17. The third one divides 1020 by 60, again to give 17. Try
not to use the result as a date—the date will be 30 Dec 1899! The TIME() function
will also implicitly convert text values into numbers:

=TIME("0","1020","0")

TIMEVALUE()
TIME() can work on a list of three text values. TIMEVALUE() is designed for a single
string.

The examples are for calculated columns in any table.

Syntax
=TIMEVALUE("17:00:00")

=TIMEVALUE("5:00:00 PM")

Result

Analysis
The result has a date data type. Once again, you may want to adjust the format of the
result.

2 5 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

TODAY()
NOW() results in the current date and time. TODAY() simply returns the current date.
The example is for a calculated column in any table.

Syntax

=TODAY() + 10

Result

Analysis
The example adds ten days to today’s date. Your result is going to be different! The
date’s time element will be midnight.

WEEKDAY()
If you want to ascertain the day of the week as a number, try WEEKDAY(). By default,
Sunday is the first day of the week. This corresponds to the explicit second parameter in
the second example.

The examples are for calculated columns in the Orders table.

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 5 7

Syntax
=WEEKDAY(Orders[OrderDate])

=WEEKDAY(Orders[OrderDate],1)

Result

Analysis
Both of the examples have the same answer. The default for the first day of the week is
Sunday. The second example makes the default explicit. The return value is a number
from 1 to 7. Should the first day of your week be Monday, try the following formula
(the return value will be a number between 0 and 6):

=WEEKDAY(Orders[OrderDate],2)

WEEKNUM()
WEEKNUM() is used for the week number of the year.

The examples are for calculated columns in the Orders table.

Syntax
=WEEKNUM(Orders[OrderDate])

=WEEKNUM(Orders[OrderDate],1)

2 5 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
You should receive the same result from both examples. The week number is influenced
by the day of the week that starts the week. The default value is 1 for Sunday. If your
week begins on a Monday, this is the formula:

=WEEKNUM(Orders[OrderDate],2)

YEAR()
YEAR() returns the year (calendar year) from a date.

The example is a calculated column in the Orders table.

Syntax
=YEAR(Orders[OrderDate])

Result

C h a p t e r 8 : D a t e & T i m e F u n c t i o n s 1 / 2 : B a s i c F u n c t i o n s 2 5 9

Analysis
YEAR() brings back the calendar year. If you want the fiscal year, you are going to have
to write a more complex DAX formula, or calculate the fiscal year on the source data by
importing as a query. YEAR() also supports a text parameter:

=YEAR("2001/12/31")

YEARFRAC()
If you have a date interval, YEARFRAC() will calculate the fraction, or proportion, of
the year that the interval represents. The two dates that delimit the interval are passed
as two parameters into the function.

The examples are for calculated columns in the Orders table.

Syntax
=ROUND(YEARFRAC(Orders[OrderDate],Orders[ShippedDate]) * 100,2)

=ROUND(YEARFRAC(Orders[OrderDate],Orders[ShippedDate],0) * 100,2)

Result

Analysis
The two formulas are identical in outcome. The second one contains the optional Basis
parameter—the default is 0 (US 30/60), a year of 360 days divided into twelve 30-day
months. If you observe orders 10267 and 10273, they have the same answer. The Basis
parameter determines which of five methods are employed to calculate the fraction.
For a full explanation, please refer to SQL Server Books Online (BOL). The following
example uses a Basis of 3 (Actual 365).

2 6 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Now try the following formula with a 3 switch, a 365-day year with months having
their real number of days:

=ROUND(YEARFRAC(Orders[OrderDate],Orders[ShippedDate],3) * 100,2)

If you look at orders 10267 and 10273, this time, the YEARFRAC() results are
different. ROUND() is a Math & Trig function used here to tidy up the results.
ROUND() is examined in a Chapter 11.

Date & Time Functions
2/2: Time Intelligence
Functions

Chapter 9

2 6 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is the second chapter dealing with DAX Date & Time functions. The
previous chapter discusses some of the basic Date and Time functions. In this
chapter, the emphasis is on the time intelligence Date and Time functions.

The time intelligence functions are primarily used to navigate dates. In particular, they
allow you to jump ahead or back in time and retrieve relevant data. This is useful if you
wish to compare your data across or between time periods. Practical applications would
include year-on-year changes. They allow you to compare the present date, in your filter
context, with past and future dates. In addition, these functions can help you define
ranges of dates or dates up to a particular date. A practical application here might
be year-to-date sales. The basic functions generally return dates and times. The time
intelligence functions generally return measures or values associated with dates and
times, or ranges of periods used by other functions to calculate these values.

Key concepts Jumping backward and forward in time, navigating time,
establishing date ranges, returning dates up to the current date, year-on-year
changes, year-to-date totals

Keywords CLOSINGBALANCEMONTH(), CLOSINGBALANCEQUARTER(),
CLOSINGBALANCEYEAR(), DATEADD(), DATESBETWEEN(),
DATESINPERIOD(), DATESMTD(), DATESQTD(), DATESYTD(),
ENDOFMONTH(), ENDOFQUARTER(), ENDOFYEAR(), FIRSTDATE(),
FIRSTNONBLANK(), LASTDATE(), LASTNONBLANK(), NEXTDAY(),
NEXTMONTH(), NEXTQUARTER(), NEXTYEAR(), OPENINGBALANCEMONTH(),
OPENINGBALANCEQUARTER(), OPENINGBALANCEYEAR(),
PARALLELPERIOD(), PREVIOUSDAY(), PREVIOUSMONTH(),
PREVIOUSQUARTER(), PREVIOUSYEAR(), SAMEPERIODLASTYEAR(),
STARTOFMONTH(), STARTOFQUARTER(), STARTOFYEAR(), TOTALMTD(),
TOTALQTD(), TOTALYTD()

Preparation There are 35 time intelligence functions in DAX, and 35 in this
chapter. Most of them require that you have regular or calculated columns in
your PowerPivot model to cover standard time periods—that is, in addition to a
standard date column. If you wish to try the examples, please add the following
calculated columns to the Orders table in the Northwind PowerPivot model.
Instructions on how to create this model from a SQL Server source Northwind
are in Chapter 1. Instructions on how to do so from an Access, Excel, or data
feed Northwind are in Chapter 2. You will need calculated columns for the year,
quarter, and month of orders. If you worked through some of the earlier chapters,
you may already have a column for the year. Here are the DAX formulas for Year,

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 6 3

Month, and Quarter, respectively (the Quarter column references the Month
column, so you have to complete Month before Quarter):

=YEAR(Orders[OrderDate])

=MONTH(Orders[OrderDate])

=IF(Orders[Month]<4,"Q1",IF(Orders[Month]<7,"Q2",IF(Orders[Month]<10,
"Q3","Q4")))

Time intelligence requires that you prepare your date data carefully. In particular,
some of the functions only return intuitive results if your dates are contiguous and you
have the same time periods in every year. Indeed, the recommendation is that you create
a separate table just to hold dates (this is sometimes called a time or date dimension).
These topics are discussed fully in Chapter 12, which deals with common PowerPivot
and DAX solutions and problems. As it exists at present, the Northwind PowerPivot
model does not meet all of the requirements on dates to return meaningful answers to
some of the DAX formulas in this chapter. Specifically, it is not suitable for 13 of the
35 functions. In quite a comprehensive book, these are the first and only occasions on
which faithful old Northwind has let us down—on just 13 DAX functions. There are
three possible solutions—but two of them require that you have SQL Server.

The first solution is to use the ContosoRetailDW SQL Server sample database
(and import the DimDate and FactSales tables)—in that database, the dates are
already suitable for all the DAX time intelligence functions. That is the solution adopted
here—so, some functions use ContosoRetailDW, and the relevant formulas for 13 functions
are flagged as using that database. You can download ContosoRetailDW from www
.microsoft.com (search on ContosoRetailDW).

The second approach is to use the AdventureWorksDW2008 SQL Server sample
database (and import the DimDate and FactInternetSales tables). However, that requires
a bit of further work as the date column relating the two tables is an integer and not
a date.

The third solution is to create a new table in your PowerPivot model for Northwind
(Excel or Access or data feed version, not just SQL Server version) to hold dates and
relate the OrderDate column in the Orders table to the date column in the new table.
The new table should hold contiguous dates from the first day of the first year for
orders to the last day of the last year. You can use Fill | Series from the Editing group
on the Excel Home ribbon to create the date table. You can then import, or link, into
your PowerPivot model. Guidance on how to set up AdventureWorksDW2008 and
Northwind dates is given in Chapter 12.

For now, for just a few functions in this chapter, we are going to use the
ContosoRetailDW database.

2 6 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Here are the steps to import suitable tables from ContosoRetailDW:

1. Either from a new PowerPivot model, or from an existing Northwind PowerPivot
model, connect to SQL Server and to the ContosoRetailDW database.

2. Import two tables: DimDate and FactSales.

3. On the Design ribbon, click Manage Relationships and verify that FactSales is
related to DimDate through the DateKey (called Datekey in DimDate) column.

CLOSINGBALANCEMONTH()
Please note that the Year, Quarter, Month, and OrderDate columns from the Orders
table have been added to the Row Labels in the pivot table. The Quantity column from
Order Details has been added to the Values drop-zone before creating the measures
for our examples. There are slicers on Year and Category. CLOSINGBALANCEMONTH()
returns the last value for the current month context when combined with a calculation
function. Often, this will be the value for the last day of the current month. In general,
all of the CLOSINGBALANCE() and OPENINGBALANCE() family of functions accept
an expression as the first parameter and return a scalar value. You can also have an
optional third parameter—a SetFilter parameter, as shown in the second example.

The examples are measures. The measures have been added to the Order Details
table. Unless otherwise explicitly stated, the functions and formulas in this chapter use
the Northwind PowerPivot model. As there are various incarnations of Northwind,
your figures may differ from those shown here.

Syntax
=CLOSINGBALANCEMONTH(SUM('Order Details'[Quantity]),Orders[OrderDate])

=CLOSINGBALANCEMONTH(SUM('Order Details'[Quantity]),Orders[OrderDate],

ALL(Products[Category]))

=IF(COUNTROWS(VALUES(Orders[OrderDate])) > 1,

CLOSINGBALANCEMONTH(SUM('Order Details'[Quantity]),

Orders[OrderDate],ALL(Products[Category])))

=CALCULATE(SUM('Order Details'[Quantity]),LASTDATE(Orders[OrderDate]))

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 6 5

Result

Analysis
The time intelligence functions require that the date column has a date data type.
Many of the functions accept a SetFilter parameter, as the second and third
examples show. The first formula results in 42 for 1998, Q2 of 1998, month 5 of 1998,
and May 6. This is the closing balance, at the month level, for all of those periods. The
figure for 1996 is 35. If you expand, you will see that the quantity sold on December 31
of that year is 35. The second example ignores the filter set in the Category slicer. The
third example suppresses the result at the daily level—VALUES() always has more than
one row at aggregate levels. The fourth example uses LASTDATE() to produce a similar
result, but not at the daily level. LASTDATE() is covered later in this chapter.

CLOSINGBALANCEQUARTER()
CLOSINGBALANCEQUARTER() returns the last value for the current quarter context if
a calculation formula is also used.

The example is a measure on the Order Details table.

2 6 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=CLOSINGBALANCEQUARTER(SUM('Order Details'[Quantity]),Orders[OrderDate])

Result

Analysis
Superficially, these results are similar to those of the previous function with the
Category slicer overridden. However, the figure for month 4 of 1998 has disappeared.
This function is only going to show the values for the last month in a quarter—based
on the last day of the period. The previous function showed values for all months. If no
value exists, the function will return a blank.

CLOSINGBALANCEYEAR()
CLOSINGBALANCEYEAR() returns the last value for the current year context when
used with a calculation. With this function, and OPENINGBALANCEYEAR(), there is an
optional fourth parameter for the year-end date—the default is December 31. This is
useful if you are not working with regular calendar years.

The example is a measure on the Order Details table.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 6 7

Syntax
=CLOSINGBALANCEYEAR(SUM('Order Details'[Quantity]),Orders[OrderDate])

Result

Analysis
This time, the value for Q1 of 1998 has gone—it is not the last quarter in that
year. Incidentally, CLOSINGBALANCEYEAR() on a year returns the same figure as
OPENINGBALANCEYEAR() from the next year. OPENINGBALANCEYEAR() is covered
later in this chapter.

DATEADD()
DATEADD() allows you to navigate backward or forward in time. It’s useful for making
comparisons across time.

2 6 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The first example is a calculated column on the Orders table. The second, third, and
fourth formulas are measures and use ContosoRetailDW. The resulting screenshot
is for the second, third, and fourth examples. Before creating the first measure for
ContosoRetailDW, add SalesAmount from FactSales to the Values drop-zone.
Also, place CalendarYear, CalendarQuarter, CalendarMonth, and Datekey from
DimDate on the Row Labels of the pivot table. When you create the measures, place
them in the FactSales table. If you tried the previous function, you may want to remove
the slicers from that example—otherwise, you may receive a “Relationship needed”
warning.

Syntax
=DATEADD(Orders[OrderDate],-1,YEAR)

=CALCULATE(SUM(FactSales[SalesAmount]),

DATEADD(DimDate[Datekey],-1,YEAR))

=SUM(FactSales[SalesAmount])/CALCULATE(SUM(FactSales[SalesAmount]),

DATEADD(DimDate[Datekey],-1,YEAR))

=IF(CALCULATE(SUM(FactSales[SalesAmount]),

DATEADD(DimDate[Datekey],-1,YEAR)),

SUM(FactSales[SalesAmount])/CALCULATE(SUM(FactSales[SalesAmount]),

DATEADD(DimDate[Datekey],-1,YEAR)),BLANK())

Result

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 6 9

Analysis
The second formula shows sales of the previous year. The third formula expresses the
current year as a ratio of the previous year. The fourth formula returns a blank instead
of a division-by-zero error. Please note that the third parameter here for DATEADD()
is YEAR and not YEAR(). The last formula is quite complex. You may want to break it
down into separate measures as follows:

=SUM(FactSales[SalesAmount])

=CALCULATE([Measure 1],DATEADD(DimDate[Datekey],-1,YEAR))

=IF([Measure 2],[Measure 1]/[Measure 2],BLANK())

You can further simplify the CALCULATE() function by using the measure itself as a
function. If you try this, the SetFilter argument must be in parentheses and there is
no comma after the measure. Here’s an example:

[Measure 1](DATEADD(DimDate[Datekey],-1,YEAR))

DATESBETWEEN()
Sales Amount from the Order Details table has been added to the Values drop-
zone before creating the measures. You will also need the Year, Quarter, Month, and
OrderDate columns from the Orders table. DATESBETWEEN() returns a range of dates.
The first parameter is the date column. The second and third parameters are the start
and end dates. The range of dates returned is inclusive of the start and end dates.

The examples are measures on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESBETWEEN(Orders[OrderDate],DATE(1997,12,1),DATE(1997,12,3)))

=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESBETWEEN(Orders[OrderDate],DATE(1998,5,4),BLANK()))

=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESBETWEEN(Orders[OrderDate],BLANK(),DATE(1996,7,5)))

2 7 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
BLANK(), as a start date, means from before the first date. BLANK(), as an end date,
means after the last date. The second example (Measure 2) shows the total from May 4,
1998, to the end of time. The only year with a value for this formula is 1998.

DATESINPERIOD()
DATESINPERIOD() also gives a range of dates. Instead of start and end dates, as in
DATESBETWEEN(), you use a start date and then a number of intervals. A positive
number takes you forward in time, and a negative number takes you back in time.

The example is a measure on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESINPERIOD(Orders[OrderDate],DATE(1996,7,4),5,DAY))

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 7 1

Result

Analysis
The start date here is July 4, 1996, and the number of intervals is 5. July 9 does not
qualify for the range—the potential dates are July 4, 5, 6, 7, and 8. July 6 and 7 are
not present, so the SUM() is for July 4, 5, and 8. Please note that the fourth interval
parameter for DATESINPERIOD() here is DAY and not DAY().

DATESMTD()
DATESMTD() returns all of the dates in the current month up to and including the
current date.

The example is a measure on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESMTD(Orders[OrderDate]))

2 7 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
This is effectively a running total that is restarted every month. The quarterly totals are
equal to those of the last month in the quarter. There is also a convenient alternative in
TOTALMTD():

=TOTALMTD(SUM('Order Details'[Sales Amount]),(Orders[OrderDate]))

TOTALMTD() is covered later in the chapter.

DATESQTD()
DATESQTD() returns all the dates in the current quarter up to and including the
current date.

The example is a measure on the Order Details table.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 7 3

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESQTD(Orders[OrderDate]))

Result

Analysis
This time, the quarterly totals are equal to the sum of all the months in the quarter. If
you don’t want the lower-level totals to reset, you could override the date filter context:

=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESQTD(Orders[OrderDate]),ALL(Orders))

You could also use TOTALQTD() to achieve the same result—the syntax is a little
more concise. TOTALQTD() is mentioned later in this chapter.

2 7 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

DATESYTD()
DATESYTD() returns all the dates in the current year up to and including the current
date. There is also an optional second parameter for specifying the year-end date.

The examples are measures on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESYTD(Orders[OrderDate]))

=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESYTD(Orders[OrderDate]),ALL(Orders))

Result

Analysis
Both examples give the same answer at the yearly level. The second example prevents
the lower-level running totals from resetting. You can achieve the same result with
TOTALYTD(), which is covered later in this chapter.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 7 5

ENDOFMONTH()
ENDOFMONTH() returns the last date of the month.

The example is a measure on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

ENDOFMONTH((Orders[OrderDate])))

Result

Analysis
The value for the last day of a month becomes the month value. The value of the last
day of the last month of a quarter becomes the quarter value. The value of the last day
of the last month of the last quarter of a year becomes the year value.

ENDOFQUARTER()
ENDOFQUARTER() returns the last date of the quarter.

The example is a measure on the Order Details table.

2 7 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

ENDOFQUARTER(Orders[OrderDate]))

Result

Analysis
The result is similar to that of ENDOFMONTH() except that values for months that are
not at the end of a quarter are missing.

ENDOFYEAR()
ENDOFYEAR() returns the last date of the year.

The example is a measure on the Order Details table.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 7 7

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

ENDOFYEAR(Orders[OrderDate]))

Result

Analysis
Again, this is similar, but now some quarterly values are missing, except for the last
quarter of each year.

FIRSTDATE()
FIRSTDATE() returns the first date in the current context.

The example is a measure on the Order Details table.

2 7 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

FIRSTDATE(Orders[OrderDate]))

Result

Analysis
The figure for May 1998 is the same as that for May 1, 1998. If the value for May 1
were blank, the value for May would also be blank. Similarly, the figure for 1998 will be
the same as that for the first quarter in 1998, and so on.

FIRSTNONBLANK()
FIRSTNONBLANK() is similar to FIRSTDATE() except it finds the first value that is
not blank. FIRSTNONBLANK() can be used on other columns, not just dates.

The example is a measure on the Order Details table.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 7 9

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

FIRSTNONBLANK(Orders[OrderDate],SUM('Order Details'[Sales Amount])))

Result

Analysis
The figure for May 1998 is the same as that for May 1, 1998. If the value for May 1
were blank, the value for May would be the first non-blank value found in May.

LASTDATE()
LASTDATE() returns the last date in the current context.

The examples are measures on the Order Details table.

2 8 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

LASTDATE(Orders[OrderDate]))

=CALCULATE(SUM('Order Details'[Sales Amount]),

LASTDATE(Orders[OrderDate])) - CALCULATE(SUM('Order Details'[Sales

Amount]),

FIRSTDATE(Orders[OrderDate]))

=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESBETWEEN(Orders[OrderDate],BLANK(),LASTDATE(Orders[OrderDate])))

=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESBETWEEN(Orders[OrderDate],BLANK(),LASTDATE(Orders[OrderDate])),

ALL(Products))

Result

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 8 1

Analysis
LASTDATE(), FIRSTDATE(), and BLANK() are often used to establish date ranges.
There are a few examples here. Try them one at a time to understand what the DAX
is doing. The second example shows the increase (or decrease) from the first to the last
day within the current context. In 1997, sales on the last day of the year for Beverages
were 124 down on the first day. The last example ignores the Category slicer.

LASTNONBLANK()
LASTNONBLANK() is similar to LASTDATE(). However, if the value for the last date is
blank, it will search backward in time until it finds the first non-blank value.

The example is a measure on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

LASTNONBLANK(Orders[OrderDate],SUM('Order Details'[Sales Amount])))

Result

2 8 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
The last non-blank value for 1998 is 749, when sliced by Beverages. The last non-blank
values for Q2 and May are also 749. However, the last non-blank value for Q1 1998 is 276.

NEXTDAY()
NEXTDAY() retrieves the value from the next day when used with a calculation
function. NEXTDAY(), itself, returns the date of the next day.

The example is a measure on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

NEXTDAY(Orders[OrderDate]))

Result

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 8 3

Analysis
There is no value for May 1, 1998, as May 2 does not exist or is a blank. NEXTDAY()
does not cross higher-level boundaries.

NEXTMONTH()
NEXTMONTH() retrieves the value from the next month when used in conjunction with
a calculation function.

The example is a measure on the FactSales table. The formula uses ContosoRetailDW.
Before creating the measure, add SalesAmount from FactSales to the Values drop-zone.
Also, place CalendarYear, CalendarQuarter, CalendarMonth, and Datekey on the Row
Labels of the pivot table. When you create the measure, place it in the FactSales table.

Syntax
=CALCULATE(SUM('FactSales'[SalesAmount]),NEXTMONTH(DimDate[Datekey]))

Result

2 8 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
The entry for 2009 is blank because the entry for 200912 is blank. The latter is blank as
there is no 201001.

NEXTQUARTER()
NEXTQUARTER() retrieves the value from the next quarter if it’s used with a calculation
function.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax
=CALCULATE(SUM('FactSales'[SalesAmount]),NEXTQUARTER(DimDate[Datekey]))

Result

Analysis
Once again, there is no entry for 2009.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 8 5

NEXTYEAR()
NEXTYEAR() retrieves the value from the next year when used in conjunction with a
calculation function.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax
=CALCULATE(SUM('FactSales'[SalesAmount]),NEXTYEAR(DimDate[Datekey]))

Result

Analysis
And again, there is no total for 2009. Also, note that 2006 (when there are no sales) is
shown as the measure does have a value—it’s the total for 2007.

OPENINGBALANCEMONTH()
OPENINGBALANCEMONTH() retrieves the closing balance from the previous month.
The balance is defined by the first, expression, parameter of the function. There is an
optional third parameter for defining a filter.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax
=OPENINGBALANCEMONTH(SUM(FactSales[SalesAmount]),DimDate[Datekey])

2 8 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The opening balance for 200705 is the same as the closing balance for 200704, which is
the sales value for April 30, 2007.

OPENINGBALANCEQUARTER()
OPENINGBALANCEQUARTER() retrieves the closing balance from the previous quarter.
Again, you can have a SetFilter argument as an optional third parameter.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax

=OPENINGBALANCEQUARTER(SUM(FactSales[SalesAmount]),DimDate[Datekey])

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 8 7

Result

Analysis
The value of 20072 is the same as the closing balance of 20071, which is the value for
March 31, 2007.

OPENINGBALANCEYEAR()
OPENINGBALANCEYEAR() retrieves the closing balance from the previous year. You
can also have an optional third parameter for defining a filter. A fourth parameter
allows you to specify the year-end date—the default is December 31.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax

=OPENINGBALANCEYEAR(SUM(FactSales[SalesAmount]),DimDate[Datekey])

2 8 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The opening balance for 2008 is equal to the closing balance for 2007. That, in turn, is
the value for December 31, 2007.

PARALLELPERIOD()
PARALLELPERIOD() jumps ahead or back in time.

The examples are measures on FactSales. The formulas use ContosoRetailDW.

Syntax
=CALCULATE(SUM('FactSales'[SalesAmount]),

PARALLELPERIOD(DimDate[Datekey],-1,MONTH))

=CALCULATE(SUM('FactSales'[SalesAmount]),

PARALLELPERIOD(DimDate[Datekey],1,QUARTER))

=CALCULATE(SUM('FactSales'[SalesAmount]),

PARALLELPERIOD(DimDate[Datekey],1,YEAR))

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 8 9

Result

Analysis
If the second parameter is negative, PARALLELPERIOD() goes back in time. The
third parameter can be YEAR, QUARTER, or MONTH (please note these are enumerated
constants and not strings), but not DAY.PARALLELPERIOD() is similar to DATEADD().
However, the former always returns full periods and not partial periods. You can
demonstrate the difference by comparing the quarterly results for 2010 from the
following two examples:

=CALCULATE(SUM('FactSales'[SalesAmount]),

PARALLELPERIOD(DimDate[Datekey],-1,YEAR))

=CALCULATE(SUM('FactSales'[SalesAmount]),

DATEADD(DimDate[Datekey],-1,YEAR))

PREVIOUSDAY()
PREVIOUSDAY() gives the value from the previous day when combined with a
calculation function.

The example is a measure on the Order Details table.

2 9 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

PREVIOUSDAY(Orders[OrderDate]))

Result

Analysis
PREVIOUSDAY(), by itself, simply returns a date.

PREVIOUSMONTH()
PREVIOUSMONTH() gives the value from the previous month if used with a calculation
function.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 9 1

Syntax
=CALCULATE(SUM(FactSales[SalesAmount]),PREVIOUSMONTH(DimDate[Datekey]))

Result

Analysis
The figure for 200702 is the sales amount for 200701.

PREVIOUSQUARTER()
PREVIOUSQUARTER() gives the value from the previous quarter when you use it with
a calculation function.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax
=CALCULATE(SUM(FactSales[SalesAmount]),

PREVIOUSQUARTER(DimDate[Datekey]))

2 9 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The result for 20072 is the sales value for 20071.

PREVIOUSYEAR()
PREVIOUSYEAR() gives the value from the previous year if combined with a
calculation function. There is an optional second parameter for the year-end date—the
default is December 31.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax
=CALCULATE(SUM(FactSales[SalesAmount]),PREVIOUSYEAR(DimDate[Datekey]))

Result

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 9 3

Analysis
The answer for 2009 is the same as the sales for 2008.

SAMEPERIODLASTYEAR()
SAMEPERIODLASTYEAR() jumps back one year. However, it does so at every date level.

The examples are measures on FactSales. The formulas use ContosoRetailDW.

Syntax
=CALCULATE(SUM(FactSales[SalesAmount]),

SAMEPERIODLASTYEAR(DimDate[Datekey]))

=CALCULATE(SUM(FactSales[SalesAmount])) -

CALCULATE(SUM(FactSales[SalesAmount]),

SAMEPERIODLASTYEAR(DimDate[Datekey]))

Result

2 9 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
The first formula retrieves the sales for one year ago, but it does so at the day, month,
quarter, and year levels. This makes SAMEPERIODLASTYEAR() an extremely powerful
function. The second formula works out the year-on-year change for any date. You can
achieve the same results using DATEADD().

STARTOFMONTH()
STARTOFMONTH() is the converse of ENDOFMONTH(). It returns the first day of the
month.

The example is a measure on the Order Details table.

Syntax
=CALCULATE(SUM('Order Details'[Sales Amount]),

STARTOFMONTH((Orders[OrderDate])))

Result

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 9 5

Analysis
The value for May 1998 is the same as that of May 1, 1998. The value for Q2 1998 is
the same as that of April 1998, not May 1998.

STARTOFQUARTER()
STARTOFQUARTER() returns the first day of the quarter.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

Syntax
=CALCULATE(SUM(FactSales[SalesAmount]),STARTOFQUARTER(DimDate[Datekey]))

Result

Analysis
The result for 20071 is the same as the sales for January 1, 2007.

STARTOFYEAR()
STARTOFYEAR() returns the first day of the year. An optional second parameter lets
you specify a year-end date.

The example is a measure on FactSales. The formula uses ContosoRetailDW.

2 9 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=CALCULATE(SUM(FactSales[SalesAmount]),STARTOFYEAR(DimDate[Datekey]))

Result

Analysis
The figures within each year reflect the sales for January 1. It might be fruitful to
compare the values for quarters (apart from first quarters) with the results from the last
formula.

TOTALMTD()
TOTALMTD() evaluates an expression over all the days of the month, up to and
including the current context day. The second parameter is the date column. You can
define a filter as an optional third parameter.

The example is a measure on the Order Details table.

Syntax
=TOTALMTD(SUM('Order Details'[Sales Amount]),Orders[OrderDate])

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 9 7

Result

Analysis
The totals for the year, the last quarter, and the last month are equal to the total for the
last day of the last month in the last quarter. The result is the same as the result of this
formula:

=CALCULATE(SUM('Order Details'[Sales Amount]),

DATESMTD(Orders[OrderDate]))

TOTALQTD()
TOTALQTD() returns all the days of the quarter, up to and including the current
context day when used with a calculation function. The first example has a third filter
parameter.

The examples are measures on the Order Details table.

2 9 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Syntax
=TOTALQTD(SUM('Order Details'[Sales Amount]),Orders[OrderDate],ALL(Orders))

=TOTALQTD(SUM('Order Details'[Sales Amount]),Orders[OrderDate])

Result

Analysis
The two examples are subtly different. Take a look at the contrasting sales figures
for May 1998. The first formula does not reset the aggregation as it crosses monthly
boundaries, but the second one does. The first formula overrides the date filter context
as the OrderDate column is in the Orders table.

TOTALYTD()
TOTALYTD() returns all the days of the year, up to and including the current context
day when used with a calculation function. The example uses an optional filter argument
as the third parameter. A fourth parameter allows you to specify a year-end date.

The example is a measure on the Order Details table.

C h a p t e r 9 : D a t e & T i m e F u n c t i o n s 2 / 2 : T i m e I n t e l l i g e n c e F u n c t i o n s 2 9 9

Syntax
=TOTALYTD(SUM('Order Details'[Sales Amount]),

Orders[OrderDate],ALL(Orders))

Result

Analysis
The total for Q2 1998 is that of Q1 and Q2. The total for 1998 is the same as the total
for Q2. The Grand Total is the same as that for 1998.

Well done! You have completed a long chapter! This is the last of the 35 time
intelligence functions.

This page intentionally left blank

Text Functions

Chapter 10

3 0 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This chapter deals with text (or string) manipulation. Most of the text functions
are the same as their Excel function equivalents; however, they accept text
or column parameters rather than worksheet cells or ranges. Many of these

text functions return text, and as such are usually more suitable for creating calculated
columns in PowerPivot tables rather than measures—text values can’t be added together
to give subtotals and totals in a pivot table (unless you do a COUNT()). Having said
that, if the text value can be converted into a number (for example the string “123”),
then it may be used as an additive measure. Usually, PowerPivot will implicitly do the
conversion, but you can always do it explicitly with the VALUE() function. Please note
that the FORMAT() text function also operates against numbers as well as against text.

Key concepts Comparing and finding strings, concatenating and parsing strings,
changing and formatting strings

Keywords CONCATENATE(), EXACT(), FIND(), FIXED(), FORMAT(),
LEFT(), LEN(), LOWER(), MID(), REPLACE(), REPT(), RIGHT(), SEARCH(),
SUBSTITUTE(), TRIM(), UPPER(), VALUE()

CONCATENATE() 1/2
Often, your source data is heavily normalized and names and addresses are parsed into
separate columns. This does not always make for easy viewing in a pivot table. Maybe
you want to put columns back together again. You can use the CONCATENATE() function
to reassemble text columns (it also works against numeric columns or a mix of text
and numeric). Slicing or filtering is probably easier if you have the full name of each
employee, rather than only the surname (you might have two or more employees sharing
a surname). The examples are calculated columns on the Northwind Employees table.

Syntax
=CONCATENATE('Employees'[LastName],'Employees'[FirstName])

=CONCATENATE('Employees'[LastName],", ",'Employees'[FirstName])

=CONCATENATE('Employees'[LastName],

CONCATENATE(", ",'Employees'[FirstName]))

='Employees'[LastName] & ", " & 'Employees'[FirstName]

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 0 3

Result

Analysis
The first example works, although the third example is easier to read with a comma and
a space between the LastName and the FirstName. If you try them all, you’ll find that
the second example fails—CONCATENATE() accepts a maximum of two parameters.
If you wish to join three strings, you’ll have to use nested CONCATENATE() functions;
the third formula shows how. Alternatively, you can use the ampersand (&) operator
instead, as in the fourth formula. This method is not limited to two parameters, and
is often preferred over CONCATENATE(). The result shown is that from the third or
fourth formulas.

CONCATENATE() 2/2
The DAX text functions are often quite simple. Frequently, they are employed in
conjunction with other functions to produce useful output. The formula here allows
you to slice and filter your data in a pivot table on both customer country and region
at the same time (or just country if there is no region). The examples are Northwind
Customers table calculated columns.

Syntax
=CONCATENATE(CONCATENATE('Customers'[Country]," - "),

'Customers'[Region])

=IF(ISBLANK('Customers'[Region]),'Customers'[Country],

CONCATENATE(CONCATENATE('Customers'[Country]," - "),

'Customers'[Region]))

3 0 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The first formula works—only if there’s no region, it looks a little strange (for example,
UK-). Unlike SQL Server (unless the CONCAT_NULL_YIELDS_NULL database option
is set to OFF), PowerPivot treats nulls as blanks, so adding a null region to a country
does not return null. The second formula produces a more pleasing result and is the
one shown in the preceding illustration. If the region is blank (probably because it’s
originally a null value in the source data), then the hyphen (-) is not appended to the
country. The second example has a nested CONCATENATE(). The position of the
nested CONCATENATE() is different from that in the previous set of examples, where it
appears immediately after the outer CONCATENATE(). Both varieties work.

The second example here is a lengthy formula. As such, part of it may scroll out of
view as you edit. There are two tricks that are quite handy in these situations. One,
you can increase the height of the formula bar (for calculated columns) or the Formula
text box (for measures) by dragging. Two, you can force your formula to word-wrap by
pressing alt-enter.

EXACT()
EXACT() compares two text values and returns either TRUE or FALSE. The first
formula is an example. The second example shows an alternative approach (using
an equality test) that produces the same result. More useful is the third formula, or
its equivalent in the fourth formula. The examples are calculated columns in the
Northwind Orders table.

Syntax
=EXACT('Orders'[CustomerID],"QUICK")

=IF('Orders'[CustomerID] = "QUICK", TRUE(), FALSE())

=IF(EXACT('Orders'[CustomerID],"QUICK"), "QUICK-Stop", "Others")

=IF('Orders'[CustomerID] = "QUICK", "QUICK-Stop", "Others")

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 0 5

Result

Analysis
The result is from the third formula. This enables you to slice to see values or measures
associated with the customer “QUICK-Stop” and to compare with those from all
other customers. A total of 830 orders from a maximum of 91 customers have been
summarized into 830 orders from a maximum of two customers/customer groups.
Instead of 91 choices in a slicer, you have only 2. EXACT() is case-sensitive as in the
third example. The fourth example is not case-sensitive.

FIND()
FIND() and its related function, SEARCH(), are used to see if one text value occurs
within another text value. The difference between the two functions is due to case
sensitivity. The examples are calculated columns on any table.

Syntax
=FIND("e","bottles",1)

=FIND("E","bottles",1)

Result

3 0 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
FIND(), unlike SEARCH(), is case-sensitive. Unfortunately, it only accepts literal text
values for its two parameters and can’t work directly against table columns. The number
returned is the start position of the text in the first parameter. The final parameter is the
start position for the search. The result is from the first example. The second example
returns an error, as the string is not found.

FIXED()
This time, we have a text function used in a measure rather than in a calculated column.
FIXED() is handy for formatting numbers with a specified number of decimal places
and with or without a thousands separator. The example is a calculated measure in a
pivot table, although FIXED() can also be used in a calculated column.

Syntax
=FIXED(SUM('Order Details'[Sales Amount]),2,0)

Result

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 0 7

Analysis
The second parameter to the formula is the number of decimal places. The third
parameter is for stipulating thousands separators (either 0 or 1). Counterintuitively, a
value of 1 will suppress thousands separators. Although FIXED() is a text function,
it accepts a number as the first parameter. It’s a text function, as it returns a text
value. However, it can still serve as an additive measure in the value section of a pivot
table because PowerPivot will automatically convert it back into a number (unless
it’s passed as a parameter to a function expecting a numeric parameter), but keeping
the formatting you specify. Unlike with a pure number, PowerPivot will left-align the
result—you’ll have to manually right-align it (right-click, Format Cells | Alignment |
Text Alignment | Horizontal | Right (Indent)). You can achieve the same format result
with the FORMAT() function, which is far more versatile. FORMAT() is covered next.

FORMAT()
There are five examples of the FORMAT() function here. Unlike FIXED(), it can
format date/time values as well as numeric values. Here the FORMAT() function is part
of a measure rather than a calculated column. The examples are calculated measures in
a pivot table.

Syntax
=FORMAT('Order Details'[Sum of Sales Amount],"Currency")

=FORMAT(SUM('Order Details'[Sales Amount]),"Currency")

=FORMAT(SUM('Order Details'[Sales Amount]),"$#,###.00")

=FORMAT(SUM('Order Details'[Sales Amount]),"£#,###.00")

=FORMAT(SUM('Order Details'[Sales Amount]),"#,###.00 ")

3 0 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The result is from the last example. The first two formulas set the currency symbol
implicitly; Currency is a predefined format, based on your Windows regional settings.
The currency symbol is explicitly nominated in the third, fourth, and fifth examples.
These last three are custom formats—a custom format gives you a lot of control and
you are referred to your DAX help for a full list of all the possibilities for formatting
numbers and dates.

The second parameter is the format string. In our case, there is only one entry in the
format string. It will apply to positive and negative numbers and zero. If you have two
entries in the format string (separated by semicolons [;]), the first applies to positive
and zero values and the second to negative values. With three entries, the first is for
positive numbers, the second for negative, and the third for zeros.

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 0 9

LEFT()
LEFT() is pretty straightforward and probably self-explanatory if you have used Excel,
Visual Basic for Applications (VBA), or SQL before. Unlike the Excel version, it
can operate against columns (as shown here) as well as against literal text or numeric
values—as a reminder, the DAX functions don’t operate on worksheet cells. The
example is a calculated column in the Customers table.

Syntax
=LEFT('Customers'[Country],3) & "-" & 'Customers'[CustomerID]

Result

Analysis
The formula is creating a new identifier for each customer. This new identifier is the
old primary key prefixed by the first three letters of the country and a hyphen. If you
add this to your pivot table rows, you can right-click to sort on country and old primary
key. I’ve been a little lazy here—the concatenation is done with ampersands rather than
a nested CONCATENATE().

LEN()
Again, the LEN() function is very similar to the old Excel equivalent, except it can
accept a column as a parameter. The example is a Products table calculated column.

Syntax
=LEN('Products'[QuantityPerUnit])

3 1 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The returned length of the QuantityPerUnit column includes any embedded spaces.
Each character counts as 1, even if your data is in 2-byte Unicode.

LOWER()
The LOWER() function simply converts a string or a column containing a text value
into lowercase. The example is a Products table calculated column.

Syntax
=LOWER('Products'[ProductName])

Result

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 1 1

Analysis
There’s nothing very sophisticated here. Often, the text functions are used in
combination to provide meaningful manipulation of data. Any good book on Excel
functions and formulas will contain lots of interesting examples—but please remember
that the DAX versions of the Excel functions can usually accept columns as input
parameters.

MID()
The MID() function strips out a substring from a text column or text value (it also
works on numeric columns and values). The example is a Products table calculated
column.

Syntax
=MID('Products'[ProductName],2,3)

Result

Analysis
The result is a three-character string starting at the second character of the
ProductName column.

3 1 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

REPLACE()
The REPLACE() function is potentially more useful! I don’t think you’ll be too surprised
if the REPLACE() function “replaces” some existing text. There is also a SUBSTITUTE()
function that replaces text, but it does so in a different way. SUBSTITUTE() is covered
shortly. The example is a Customers table calculated column.

Syntax
=REPLACE('Customers'[CustomerID],4,2,"XXX")

Result

Analysis
Here’s an example of how to create a new identifier for each customer. The formula
replaces two characters starting from position 4 with the characters XXX.

REPT()
The REPT() function repeats a nominated string a number of times. The examples are
Customers table calculated columns.

Syntax
='Customers'[CustomerID] & REPT(".",3)

=LEFT('Customers'[CustomerID],3) & REPT("X",3)

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 1 3

Result

Analysis
The first example adds three trailing dots to the CustomerID column, the result shown.
The second one has the same result as the previous example formula for REPLACE().

RIGHT()
The RIGHT() function returns a specified number of characters from the end of a text
column or literal string value (trailing spaces count as characters). The example is a
Customers table calculated column.

Syntax
=RIGHT('Customers'[CustomerID],3) & LEFT('Customers'[CustomerID],2)

Result

3 1 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Analysis
Here we are jiggling with the customer identifier.

SEARCH()
The SEARCH() function is the same as FIND() apart from case sensitivity. The
examples are calculated columns on any table.

Syntax
=SEARCH("e","bottles",1)

=SEARCH("E","bottles",1)

Result

Analysis
SEARCH(), just like FIND(), only works on literal values. It’s not possible to search a
column—if you try, you’ll receive an error. The third parameter is the start position for
the search. SEARCH() is not case-sensitive, so both examples work.

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 1 5

SUBSTITUTE()
The SUBSTITUTE() function is slightly different from the REPLACE() function. The
example is a Products table calculated column.

Syntax
=SUBSTITUTE('Products'[QuantityPerUnit],"oz","ounce",1)

Result

Analysis
Instead of a number of characters to replace (as in the REPLACE() function),
you specify a replacement string. Here we are changing “oz” to “ounce.” The third
parameter is the number of the occurrence to replace (or all occurrences if omitted);
SUBSTITUTE() is case-sensitive.

TRIM()
Use TRIM() to remove leading and trailing space characters. The example is a Customers
table calculated column.

Syntax
=TRIM('Customers'[Country])

3 1 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
Leading (and trailing) spaces can cause problems sorting in your pivot tables, so
it’s often a good idea to employ TRIM(). It does not remove embedded spaces, nor
does it remove the special Unicode non-breaking-space character. The example here
is somewhat artificial, as there are no leading or trailing spaces—it’s for illustration
purposes only.

UPPER()
This function converts a column or string literal into uppercase. The example is a
Customers table calculated column.

Syntax
=UPPER('Customers'[Country])

Result

C h a p t e r 1 0 : Te x t F u n c t i o n s 3 1 7

Analysis
This function might be quite handy for display purposes in your pivot tables and charts.

VALUE()
VALUE() is used to convert text into a number. It accepts both literals and column
references. It also works against dates. The text, of course, must be a valid number—“123”
will work while “x123” will not. The examples are Products table calculated columns.

Syntax
=VALUE(LEFT('Products'[QuantityPerUnit],1))

=VALUE(LEFT('Products'[QuantityPerUnit],2))

Result

Analysis
The second formula will produce an error. That’s because the second character for the
QuantityPerUnit column for the product Queso Cabrales is a space character, which can’t
be cast as a number. It’s quite likely you won’t ever need the VALUE() function. By default,
PowerPivot will attempt to convert text into numbers where appropriate. This is true in
general. However, this is not always the case with measures imported from an SSAS cube.
If a cube measure is used in a DAX function, it may well be converted. If a cube measure
is added to the Values drop-zone in a pivot table, it may not be converted. Implicit data
conversion on cube measures (from text to numeric) may not work as cube numeric
measures can contain non-numeric values (as a result of a cube calculated measure or an
MDX Scope statement in a cube script). The first example can probably be left as

=LEFT('Products'[QuantityPerUnit],1)

This page intentionally left blank

Math & Trig Functions

Chapter 11

3 2 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is the final chapter dealing with DAX functions and formulas. It deals
with the Math & Trig functions. However, you won’t find any trigonometric
functions as such—expect these to appear in a later version of PowerPivot for

Excel. Some of the functions, for example, EXP() and LN(), are probably for specialized
use only. However, many of the others are going to be very popular—particularly, the
eight functions devoted to rounding numbers. SUM() and SUMX() are Math & Trig
functions, although they have much in common with the Statistical functions as well.
They were both covered in an earlier chapter on aggregate functions (that is, Statistical
functions with SUM() and SUMX()), but are mentioned here again for completeness. In
any case, SUMX() is worth a second look, as it will be very useful in many BI situations.

Key concepts Arithmetic manipulation, exponents and logarithms, rounding up
and/or down, summing data

Keywords ABS(), CEILING(), EXP(), FACT(), FLOOR(), INT(), ISO.
CEILING(), LN(), LOG(), LOG10(), MOD(), MROUND(), PI(), POWER(),
QUOTIENT(), RAND(), RANDBETWEEN(), ROUND(), ROUNDDOWN(),
ROUNDUP(), SIGN(), SQRT(), SUM(), SUMX(), TRUNC()

ABS()
ABS() simply converts a negative number into a positive one, and leaves positive
numbers unchanged. The example uses the Products table.

Syntax
=ABS(Products[UnitsInStock]-Products[ReorderLevel])

Result

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 2 1

Analysis
The result of UnitsInStock minus ReorderLevel for the product Chang is negative.
ABS() has converted this to a positive value.

CEILING()
The CEILING() function rounds a number up to the nearest multiple of significance.
The second parameter is the unit of significance. If both parameters are negative,
CEILING() will round down—this distinguishes CEILING() from ISO.CEILING().
The example uses the Products table.

Syntax
=CEILING(Products[UnitPrice],1)

=CEILING(Products[UnitPrice],.1)

Result

Analysis
The result shown is from the second example. If you look at Chef Anton’s Gumbo
Mix, the price has been rounded up to the nearest tenth of a pound (or dollar or euro,
depending upon your Control Panel regional settings)—here it’s been changed from
21.35 to 21.4.

3 2 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

EXP()
EXP() takes just one parameter, which is the power to which to raise the exponent e
(2.71828182845904). The example can be used in any table or as part of a measure.

Syntax
=EXP(2)

Result

Analysis
The result (7.38905609893065) is e squared. This is a useful function if you are engaged
in scientific or mathematical work. EXP() is the inverse of LN().

FACT()
If you want the factorial of a number, then use FACT(). The example can be used in
any table or as part of a measure.

Syntax
=FACT(5)

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 2 3

Result

Analysis
The answer, 120, is 5 multiplied by 4 multiplied by 3 multiplied by 2 multiplied by 1.
FACT() has lots of applications, including in statistics.

FLOOR()
As you might expect, FLOOR() is the opposite of CEILING(). It rounds numbers
down to the unit of significance, which is the second parameter. The example uses the
Products table.

Syntax
=FLOOR(Products[UnitPrice],.1)

3 2 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
This time, Chef Anton’s Gumbo Mix has changed from 21.35 to 21.3.

INT()
INT() rounds a number down to an integer. The example uses the Products table.

Syntax
=INT(Products[UnitPrice])

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 2 5

Result

Analysis
If you scroll down to the product Schoggi Schokolade, the price of 43.9 has been
rounded down to 43. The same result could have been achieved by using the TRUNC()
function. INT() and TRUNC() differ in how they operate on negative numbers. The
following syntax, using FLOOR(), also produces the same result:

=FLOOR(Products[UnitPrice],1)

ISO.CEILING()
This function, ISO.CEILING(), is similar to CEILING(). The difference between
the two functions lies in how they behave when both parameters are negative. In that
situation, ISO.CEILING() will round up, while CEILING() will round down. The
second parameter is the unit of significance. The example uses the Products table.

Syntax
=ISO.CEILING(Products[UnitPrice],.1)

3 2 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
Chef Anton’s Gumbo Mix is now 21.4 rather than 21.35.

LN()
LN() returns the natural logarithm of a number. The example can be used in any table
or as part of a measure.

Syntax
=LN(5)

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 2 7

Result

Analysis
There are two other logarithmic functions, LOG() and LOG10(). LN(), the natural
logarithm, has a base of the constant e. It’s the inverse of EXP().

LOG()
Here is the second of three logarithmic functions. LOG() accepts two parameters, a
number and the base for the logarithm. The example can be used in any table or as part
of a measure.

Syntax
=LOG(5,5)

3 2 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
If you omit the second parameter, it is assumed you want the logarithm to the base of
10—it then returns an identical result to the function LOG10().

LOG10()
LOG10() is the third of our three logarithmic functions. The example can be used in
any table or as part of a measure.

Syntax
=LOG10(100)

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 2 9

Result

Analysis
LOG(100) would also return the same result as LOG10(100).

MOD()
MOD() is the modulo function. The second number is the divisor, the number you wish
to divide by. The example uses the Products table.

Syntax
=MOD(Products[ReorderLevel],2)

3 3 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
MOD() returns the remainder after the division. Here, the divisor is 2, and MOD() has
identified odd and even values. The product Chang, for example, has an odd number
(25) for its ReorderLevel.

MROUND()
There are quite a few rounding functions in DAX. MROUND() rounds up or down to
the nearest unit (or multiple, hence the name MROUND()) of significance. The example
uses the Products table.

Syntax
=MROUND(Products[UnitPrice],5)

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 3 1

Result

Analysis
The price of the product, Mishi Kobe Niku, has been changed from 97 to 95. With
CEILING() the result would be 100. FLOOR() would have given the same result—but
FLOOR() and MROUND() would have returned different results for Tofu. MROUND()
can act as CEILING() or FLOOR(), depending on the number that is the first
parameter. There are even more rounding functions. INT() and TRUNC() always
round to an integer; their behavior is only different on negative numbers. ROUND(),
ROUNDDOWN(), and ROUNDUP() round to a given number of figures, rather than to a
multiple of significance like MROUND().

PI()
PI() returns the constant pi. It is accurate to 14 decimal places. The example can be
used in any table or as part of a measure.

Syntax
=PI()

3 3 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
This might be useful if you have a column that records a radius and you also use it in
conjunction with the POWER() function!

POWER()
The first parameter of POWER() is a number or a numeric column or an expression
evaluating to a number. The second parameter is the power to which to raise the
number. The example can be used in any table or as part of a measure.

Syntax
=POWER(4,3)

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 3 3

Result

Analysis
If you did have a radius of a circle column, then that column could be the first
parameter. The second parameter could be 2 and you might then multiply by PI(), to
give you the area of a circle. Of course, POWER() and PI() have rather more uses than
that!

QUOTIENT()
QUOTIENT() divides the first numeric parameter by the second one and returns the
integer part of the result. The example uses the Products table.

Syntax
=QUOTIENT(Products[ReorderLevel],2)

3 3 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
You can achieve the same result by using this alternative syntax:

=INT(Products[ReorderLevel]/2)

RAND()
There are two functions for generating random numbers, RAND() and
RANDBETWEEN(). RAND() accepts no parameters and returns a random number
between 0 and 1. The examples can be used in any table or as part of a measure.

Syntax
=RAND()

=RAND()*(10-1)+1

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 3 5

Result

Analysis
The result shown is from the second example. It demonstrates how to generate a
random number between 1 and 10. Your results will differ. Also, the result is different
for every row. If you refresh the table, or force a manual recalculation, the results will
change.

RANDBETWEEN()
RANDBETWEEN() takes two parameters, a bottom boundary number and a top
boundary number. It returns random integers between those two numbers, inclusive.
The example can be used in any table or as part of a measure.

Syntax
=RANDBETWEEN(1,10)

3 3 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
If you recalculate your DAX functions, or refresh the source data, which forces
recalculation, then both RAND() and RANDBETWEEN() as calculated columns will
return different results. In the example, RANDBETWEEN returns whole numbers. Your
results will differ. This is different from the second example in the previous query:

=RAND()*(10-1)+1

ROUND()
Coming up are three more rounding functions for you to try. ROUND() is the first
one. ROUND() will round up or round down. It differs from MROUND() in that the
second parameter is the number of significant figures rather than a unit or multiple of
significance. The example uses the Products table.

Syntax
=ROUND(Products[UnitPrice],-1)

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 3 7

Result

Analysis
ROUND() can round down (like ROUNDDOWN()) or round up (like ROUNDUP()). The
second parameter in this example is negative: -1 means “round to an integer value.”
If you wish to round to a number of decimal places, then make the second parameter
positive. Negative values for the second parameter round to the left of the decimal
point. It may be useful to compare the products Chang and Chef Anton’s Cajun
Seasoning. The first is rounded up, and the second is rounded down.

ROUNDDOWN()
ROUNDDOWN(), unlike ROUND(), always rounds down. If the second argument is
negative, it rounds down to the left of the decimal point. The example uses the Products
table.

Syntax
=ROUNDDOWN(Products[UnitPrice],-1)

3 3 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
It might be instructive to look at Chang and Chef Anton’s Cajun Seasoning again.

ROUNDUP()
As you probably expect, ROUNDUP() always rounds up. A negative second parameter
rounds up to the left of the decimal point. The example uses the Products table.

Syntax
=ROUNDUP(Products[UnitPrice],-1)

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 3 9

Result

Analysis
Once more, please take a look at both Chang and Chef Anton’s Cajun Seasoning.
Hopefully, you can see the difference between ROUND(), ROUNDDOWN(), and
ROUNDUP(). If you would like to experiment further, you may like to try the following
example, which has a positive second parameter, and look at Chef Anton’s Gumbo Mix:

=ROUNDUP(Products[UnitPrice],1)

SIGN()
You might use SIGN() to help you identify positive and negative numbers in a pivot
table. The function returns a zero for zero values. The example uses the Products table.

Syntax
=SIGN(Products[UnitsInStock]-Products[ReorderLevel])

3 4 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
If you scroll down to Nord-Ost Matjeshering, it looks as if we forgot to place an order
with our supplier!

SQRT()
SQRT() simply returns the square root of a number or a numeric column or numeric
expression. If the expression used as the only parameter evaluates to a negative number,
SQRT() returns an error. The example uses the Products table.

Syntax
=SQRT(Products[ReorderLevel])

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 4 1

Result

Analysis
Maybe we ought to use one of the rounding functions with the result for Chai.

SUM()
Although we are using SUM() in a calculated column, it’s a very common function to
use in a measure as well. SUM() is officially a Math & Trig function; that’s why it’s
included here. However, it has a lot in common with the Statistical functions, which
is why it was also covered in the earlier chapter on aggregate (that is, Statistical with
SUM() and SUMX()) functions. The example uses the Products table.

Syntax
=SUM(Products[UnitsInStock])

3 4 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
The formula returns the total number of all products in stock. This may or may not
be a valid aggregation; that’s a business decision. The result could be divided into
UnitsInStock for each product to calculate the percentage contribution to total stock.

SUMX()
Like SUM(), SUMX() is also a Math & Trig function. It too was covered earlier when
we looked at aggregate functions. SUMX() is one of the X-functions, which means it
requires a table (and not a numeric value) as its first parameter. The example uses the
Categories table.

C h a p t e r 1 1 : M a t h & Tr i g F u n c t i o n s 3 4 3

Syntax
=SUMX(RELATEDTABLE(Products),Products[UnitsInStock])

Result

Analysis
Here RELATEDTABLE() is being used to return a table as the first parameter for
SUMX(). The second parameter is a numeric column in the referenced table. The result
indicates that, for example, we have 559 beverage products in stock. If you add the
figures for each row, the answer is 3119, the result of our total stock from the previous
query.

TRUNC()
This is our final Math & Trig function. TRUNC() strips away decimals to leave a whole
number. The example uses the Products table.

Syntax
=TRUNC(Products[UnitPrice])

3 4 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Result

Analysis
You can return the same result by using INT(). However, to illustrate the difference
between INT() and TRUNC(), you may want to try the following two examples:

=INT(-7.2)

=TRUNC(-7.2)

INT() and TRUNC() are the same when applied to positive values—they behave
differently on negative values. The results are -8 and -7, respectively.

Part III

PowerPivot and
DAX Applied

This page intentionally left blank

A Few Ideas: PowerPivot
and DAX Solutions

Chapter 12

3 4 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The real world is the real world. Software, and books about software, can only
give you “out-of-the-box” solutions. Real-world solutions require a bit more
work. This chapter presents a few ideas for moving beyond “out-of-the-box”

answers. It is all about implementing PowerPivot and DAX to deal with common
business problems. The three appendixes that follow this chapter have a narrower focus,
of how to write SQL, MDX, and DMX queries for assembling data in your PowerPivot
model. In contrast, this chapter is more concerned with using DAX and the PowerPivot
GUI to provide solutions, once you already have the data in place. That said, there is a
little on importing data to address the problem of working effectively with dates and
dealing with self-joins.

Working with dates can lead to a number of problems—some of these are addressed
here. There are also a few “classic” BI solutions in this chapter: percentage of total and
subtotal, running totals, changes over time, moving averages, suppressing totals for
non-additive numbers, dealing with semi-additive numbers, customizing DAX formulas
for individual rows or columns, predefining filters, predefining Column Labels and Row
Labels with named sets, working without pivot tables, sharing your pivot reports with
others through SharePoint, and a few other things.

Key concepts Date and time solutions, totals and subtotals, contributions to
totals and subtotals, changes over time, non-additive and semi-additive numbers,
moving averages, predefining filters and sets, self-joins, working without pivot
tables, PowerPivot for SharePoint

Preparation Many of the examples in this chapter use a Northwind PowerPivot
model. Instructions on how to create this model from a SQL Server Northwind
source are in Chapter 1. Instructions on how to do so from an Access, Excel, or
data feed Northwind are in Chapter 2. One or two examples will use another data
source, namely the SQL Server sample database, ContosoRetailDW.

Do You Have a Problem on Dates?
Maybe you don’t always get the results you would like on dates—I often don’t! Most
PowerPivot models will include a date somewhere. Users often want to see the data by
year or quarter or month. Frequently, they will want to drill down or drill up on dates.
Dates are notoriously difficult to handle. This section includes a number of suggestions.

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 4 9

Parsing Dates
The Northwind sample has an OrderDate column in the Orders table. This has a data
type of date and is simply a date. Users like to slice, filter, and view years and quarters,
but these are not present as separate columns. Splitting a date into constituent parts is
called parsing a date. There are a number of ways of doing this. One, you can do it in
PowerPivot using DAX. Two, you can parse the date by writing a query for data import
into your model. Three, you can create the columns in the source data. Neither of these
is that difficult, but establishing fiscal years and quarters is more of a challenge. If you
do have fiscal periods, it might also be a good idea to concatenate FY, and also CY to
calendar periods, so dates in a pivot table are unambiguous. Let’s consider calendar
years and calendar quarters first—month names are the same for calendar and fiscal, but
month numbers may or may not be, depending upon your accounting conventions.

If you want to parse dates within the PowerPivot model, use DAX formulas. Here
are a few formulas to get you started. The first one is a calculated column to return the
calendar year—it’s called Year in some of the examples in this chapter. The second one
returns the month as a number—this column is called Month and is used by the next
three formulas, as well as later in the chapter. The month name (called MonthName
later in the chapter) is the result of the third example—it’s also easy to return the full
name, rather than an abbreviation. Formulas four and five are two alternative methods
of returning the calendar quarter (called Quarter).

=YEAR(Orders[OrderDate])

=MONTH(Orders[OrderDate])

=IF(Orders[Month]=1,"Jan",

IF(Orders[Month]=2,"Feb",

IF(Orders[Month]=3,"Mar",

IF(Orders[Month]=4,"Apr",

IF(Orders[Month]=5,"May",

IF(Orders[Month]=6,"Jun",

IF(Orders[Month]=7,"Jul",

IF(Orders[Month]=8,"Aug",

IF(Orders[Month]=9,"Sep",

IF(Orders[Month]=10,"Oct",

IF(Orders[Month]=11,"Nov",

"Dec")))))))))))

=IF(Orders[Month]<4,"Q1",

IF(Orders[Month]<7,"Q2",

IF(Orders[Month]<10,"Q3","Q4")))

=CONCATENATE("Q",ROUNDUP(Orders[Month]/3,0))

3 5 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Another way of extracting date parts is to write a query to import the table
containing the date. Here is the SQL to do so, against the SQL Server Northwind
database. It returns the date column itself, followed by the calendar year, the calendar
quarter, the month number, and the month name. Of course, you would want further
columns, such as OrderID and Freight. If you return both the month number and the
month name, it’s going to help you sort by, and show, month name in a slicer—more on
this shortly.

select OrderDate, 'CY ' + cast(DATEPART (yy,OrderDate) as char(4))

as [Calendar Year], 'Q' + cast(datepart(qq,OrderDate) as char(1))

as [Calendar Quarter], datepart(mm,OrderDate) as [Month Number],

datename(mm,OrderDate) as [Month Name]

from

Orders

It’s reasonably trivial to concatenate the year to the quarter—this is helpful if the
user only has quarters in Column Labels or Row Labels; it shows the year for each
quarter. You could also do the same for month number. However, if you add the year to
the month name, you may experience problems sorting by name in the pivot table.

You might want to experiment with the DAX and/or the SQL approach on the
Orders table. There is a third way of parsing dates. It’s even easier. However, it requires
that you have SSAS and BIDS. In an Analysis Services project, the dimension wizard
can generate all of this data (and more) for you. In addition, it can create fiscal as well as
calendar periods. There is more on this wizard in the next section on having a separate
table for dates.

Separate and Contiguous Date Table
It’s generally recommended that you create a separate table, just for holding dates. You
can then relate your other tables (such as Orders) to this separate table. When you
create a separate table, it’s usually called a date dimension or a time dimension. Having
such a table is standard practice in “traditional” BI. It confers a number of benefits.
One, it centralizes your dates and date manipulation—you don’t have to perform date
parsing across multiple tables containing dates. Two, it makes it easy to have contiguous
dates. If you look at the OrderDate column, some dates are missing. Having contiguous
dates helps the DAX time intelligence functions to return intuitive results—it doesn’t
matter that some of the dates are missing from the many-side table (in this case, that
would be Orders). This is particularly true when navigating dates and comparing dates
across time. Creating contiguous dates is fairly straightforward; you can use Excel

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 5 1

or BIDS. There is one drawback to having a separate time dimension. This occurs
when you have more than one date column in a table. You can only relate one of those
columns back to the one-side time dimension. The Orders table has OrderDate,
RequiredDate, and ShippedDate. If you went for the separate time dimension
approach, you would need three time dimensions. In this release, PowerPivot does not
support multiple relationships between tables. You can verify this (if you have SQL
Server AdventureWorksDW2008) by importing the DimDate and FactInternetSales
tables—two of the three relationships between those two tables are dropped during the
import. However, it’s simple to create two more time dimensions—select and copy all
of DimDate (press ctrl-a, and click Copy on the Home ribbon), and paste (click the
Paste button on the Home ribbon) into the PowerPivot model.

You can use Excel to create a separate time dimension from your dates. It’s
recommended that you make the dates contiguous. But where do you start and where
do you finish? A good place to start is January 1 of the first year for which you have
dates, and finish with December 31 of the last year for which you have dates. You might
choose Sort Oldest to Newest, then Sort Newest to Oldest, on the OrderDate column
to do this—or you could try MAX() and MIN(). To create a time dimension in Excel:

1. Enter a start date in a cell of an empty worksheet. With focus on that cell, click
the Fill button in the Editing group of the Excel Home ribbon. This opens a
drop-down menu, which is shown in Figure 12-1.

2. In the drop-down choose Series, which opens the Series dialog, shown in
Figure 12-2. In this dialog, turn on the option button for Columns and enter
a finish date (for instance, 12/31/2020, or 31/12/2020, depending upon your
regional settings) for the Stop value, before clicking OK.

3. Import this worksheet (or use a linked table) into your PowerPivot model.

4. Relate a date column in an existing PowerPivot table to the single date column
in this new table.

Figure 12-1 Fill drop-down menu

3 5 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you have BIDS, there’s even more you can accomplish easily, including generating
fiscal time periods. To create a time dimension using BIDS (BIDS is beyond the scope
of this book—only an outline is given here, rather than detailed steps):

1. In BIDS, create a new SSAS project. Right-click Data Sources, in Solution
Explorer, in order to create a new data source. Point this to a relational database,
for example, SQL Server Northwind.

2. Right-click Dimensions and launch the Dimension Wizard. In the Select
Creation Method dialog, turn on the option button for Generate a Time Table in
the Data Source. The Select Creation Method dialog is shown in Figure 12-3.

3. In the Define Time Periods dialog, shown in Figure 12-4, specify the start and
finish dates, the first day of the week, and the time periods you require. Please
note, if you turn on Month, it will generate both month number and month name.

4. The next dialog, shown in Figure 12-5, is the Select Calendars dialog. In addition
to Regular Calendar, which means calendar dates, you might want Fiscal Calendar
and others.

5. When you are finished in the wizard, you should be looking at the dimension
designer for your new dimension. At the right-hand side, click on the link to
generate a data source view. This starts the Schema Generation Wizard. Step
through this wizard, and check that the table has been generated in the Schema
Generation Progress dialog, shown in Figure 12-6, before clicking Close. That’s
all! You can now import this new table into PowerPivot and relate your existing
date columns, in your existing tables, to the date column in the new table (it’s
called PK_Date by default and has a date data type). A sample generated table is
shown in Figure 12-7.

Figure 12-2 Series dialog

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 5 3

Perhaps a word of caution is necessary for those readers who have a BI background.
In “traditional” BI solutions, the time dimension often has an integer (Whole Number)
surrogate dimension key. The foreign keys that relate to this from fact tables are
also integers. The SQL Server sample database, AdventureWorksDW2008, uses an
intelligent key (for example, 20030701) rather than a surrogate key, but it’s still an
integer. DAX time intelligence functions require a date that’s a date data type. You
have to convert the primary and foreign keys to dates. Once that’s done, remove the
integer key relationship and relate the two tables on date. The DAX to convert an
intelligent integer key (in the form of 20030701) to a date is as follows:

=DATE(LEFT(DimDate[DateKey],4),MID(DimDate[DateKey],5,2),

RIGHT(DimDate[DateKey],2))

Figure 12-3 Select Creation Method dialog

3 5 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you have the ContosoRetailDW SQL Server sample database, you don’t have to
do this—the primary and foreign keys are already dates.

Sorting on Dates
Sorting on dates, especially months, is not always an out-of-the-box solution. If you
add month numbers to Column Labels or Row Labels or to a slicer, they should sort
correctly. However, your users will likely prefer to see month names. Naturally enough,
these are going to sort alphabetically—which is not what you want. The problem is
illustrated in Figure 12-8 for Row Labels, and in Figure 12-9 for a slicer.

Figure 12-4 Define Time Periods dialog

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 5 5

Neither looks that good. The solution to the problem depends on whether it’s
Column Labels/Row Labels or a slicer. Here are some simple steps to sort month
names correctly in either Column Labels or Row Labels:

1. Add Sales Amount to Values, and Year, Quarter, and MonthName (the formulas
for these date parts are at the start of this chapter) to Row Labels.

2. Right-click on any month name. Choose Sort followed by Sort A to Z. This does
not sort alphabetically! When you choose this option, Excel’s own intelligent
sorting algorithm takes over. For this to work you must use standard names
for the months, for example, Jan or January—FirstMonth as a name would not
work. The pivot table, shown in Figure 12-10 now has the month names sorting
correctly.

Figure 12-5 Select Calendars dialog

3 5 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 12-6 Schema Generation Progress dialog

Figure 12-7 Generated time dimension in PowerPivot

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 5 7

Figure 12-8 Month names in Row Labels

Figure 12-9 Month names in a slicer

Unfortunately, the previous steps do not apply to slicers. For a slicer, you have to
prepend the month name with the month number. This is not perfect, and will not be
necessary in the next release of PowerPivot. But for now, here are the steps to sort on
month name correctly in a slicer:

1. Add a calculated column to the Orders table and enter the following DAX formula:

=IF(LEN([Month]) = 1,"0" & [Month] & " - " & [MonthName],
[Month] & " - " & [MonthName])

2. Use this calculated column in the slicer. The result is shown in Figure 12-11.
Please note that the zero in front of single-digit month numbers is necessary for
a correct sort.

3 5 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 12-10 Month names sorting correctly in Row Labels

Figure 12-11 Month names sorting correctly in a slicer

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 5 9

Numbers That Don’t Add Up
Many numbers (whether from calculated columns or calculated measures) can be
aggregated in all situations. In our Northwind PowerPivot model, such numbers
are Quantity and Sales Amount from the Order Details table. It makes sense to see
subtotals and totals for these numbers, whether by product or employee or customer or
date. Such numbers are full-additive numbers. Some numbers, however, can never be
usefully aggregated or only aggregated in certain circumstances. The former are called
non-additive numbers and the latter, semi-additive numbers. A semi-additive number
might be a bank balance. If you have two bank accounts, you can add them together to
give you your total balance. Unfortunately, you can’t add them together solely by time! If
you had $100 in your account last week and $200 this week, sadly, you don’t necessarily
have $300. Bank balances are only additive in certain circumstances. A non-additive
number might be an inventory figure. If you have 10 of the product Chai in stock and
20 of the product Chang, it might not be meaningful to say you had 30 in stock. That is
a business decision; you could argue that to say you had 30 products in stock was sensible.
To take another example, if you had 10 Chai last week and 5 Chai this week, the answer
is probably not 15. Maybe the answer is 5, the last non-blank value (there is a DAX
function called LASTNONBLANK(), which is very useful when looking at totals across
time). This section deals with non-additive and semi-additive numbers in a pivot table.

Take a look at Figure 12-12. The pivot table is filtered to show only a few products.
You might conclude that the grand total for UnitsInStock (from the Products table) is
not a valid total. What if you would prefer to hide this total?

You can easily hide the grand total for UnitsInStock by going through the Grand
Totals button in the Layout group of the PivotTable Tools/Design ribbon. However,
that is also going to hide the total for Sales Amount, which is perfectly valid and may
be required by end users. Here’s an approach that can be used to selectively hide totals.
Add a new measure to the pivot table with the following formula:

=IF(COUNTROWS(VALUES(Products[ProductName]))=1,SUM(Products[UnitsInStock]))

Figure 12-12 Incorrect total for inventory?

3 6 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

The formula is counting the number of rows in the current filter context for the
product name. If the number of rows is 1, then the current context is at the individual
product level. The third parameter for the IF() function is missing. That’s the false
result, and if it’s missing, it returns a blank—or you could explicitly use BLANK(). The
result is shown in Figure 12-13.

An interesting problem arises when you aggregate UnitsInStock across time. Here, you
may want to see a total. The most meaningful total for a product would be equal to the
last stock-take figure for that product. In SSAS, there are two useful aggregations called
LastChild and LastNonEmpty for working with inventory figures. Fortunately, there is
a DAX equivalent of LastNonEmpty, the DAX function LASTNONBLANK(). In order to
demonstrate this, we need inventory figures across time. The Northwind UnitsInStock
column is a static picture, and the stock-take is not dated. However, if you have the SQL
Server sample database, ContosoRetailDW (you can download it from www.microsoft.
com—search on ContosoRetailDW), you can look at inventory figures across time—
you’ll need the DimDate and FactInventory tables. The practical shows how to handle
numbers that do not add up over time. Here are the step-by-step instructions:

1. Add the DimDate, DimProduct, and FactInventory tables from ContosoRetailDW
to a PowerPivot model. DimDate contains dates, and FactInventory includes
stock-take figures for different dates and products. DimProduct is added so you
can see the product name, rather than a product key. You may need to verify the
relationships between these tables. FactInventory should be related to DimDate
through the DateKey column. It should also be related to DimProduct through
the ProductKey column. When you add tables separately, the relationships in the
source data are not discovered by PowerPivot.

2. Insert a pivot table and add CalendarYear (from DimDate) to Column Labels,
ProductName (from DimProduct) to Row Labels, and OnHandQuantity
(from FactInventory) to Values. Set a label filter on the rows to adventure
works laptop12, using Label Filters, Begins With (and I thought Adventure
Works only made bikes!)—the result is shown in Figure 12-14.

Figure 12-13 Correct total for inventory?

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 6 1

3. The Grand Total for each row is incorrect. It should be equal to the last annual
stock-take figure, and not a summation. To start fixing the problem, replace the
entry for OnHandQuantity in Values with a new measure called BadInventory.
You may want to add this to the FactInventory table. The formula follows:

=SUM(FactInventory[OnHandQuantity])

4. The totals are still incorrect, and there is no figure for M1200 Black for 2009.
Remove BadInventory from the Values drop-zone (but not from the field list),
and add another measure, called Inventory. The formula is:

=SUMX(VALUES(DimProduct[ProductKey]),CALCULATE([BadInventory],
LASTNONBLANK(DimDate[Datekey],[BadInventory])))

This is a reasonably complex piece of DAX. It means “sum all the values in the
DimProduct table, but only using the last inventory figure found for each date.”
The result is shown in Figure 12-15. The Grand Total for each row is now correct.
The inventory figures for each year also look better—they are now using the last
stock-take figure in each year, rather than a sum.

Figure 12-14 An incorrect inventory pivot table

Figure 12-15 A better inventory pivot table

3 6 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

5. However, there is still a problem. The figure for M1200 Black is missing for 2009.
If this entire product had been sold in 2009, the figure would presumably be zero.
A blank, on the other hand, means that no stock-take was performed in 2009.
In that case, it might be reasonable to assume that the 2009 figure should be the
same as the 2008 figure (implying that there were no sales from stocks in 2009).
Change the DAX formula to this:

=SUMX(VALUES(DimProduct[ProductKey]),CALCULATE([BadInventory],
LASTNONBLANK(DATESBETWEEN(DimDate[Datekey],BLANK(),
LASTDATE(DimDate[Datekey])),[BadInventory])))

The final result is shown in Figure 12-16. There is now an entry for M1200 Black
for 2009. In addition, we now have the stock figures for 2010 and 2011. The correct
answers are being returned. The DATESBETWEEN() function looks at all dates up to
the last, or current context, date from the beginning of time. The last date is given by
LASTDATE(). LASTNONBLANK() then finds the last stock-take figure within the date
range returned by DATESBETWEEN().

Classic BI Solutions
This section considers some classic BI solutions. The ones examined are percentage of
all, percentage of a row or column total, percentage of parent, a measure customized
for a row or column context, changes over time, a moving average, and two forms of
a running total. You can build a lot of these by using the pivot table GUI, but a DAX
solution gives you a lot more control over the filter context.

Percentage of All
Our starting point is shown in Figure 12-17. It’s using the Northwind PowerPivot
model (Category, ProductName, Year, and Quantity).

Figure 12-16 A correct inventory pivot table

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 6 3

To work out the percentage of all, add a new measure to the Order Details table. The
formula is:

=SUM('Order Details'[Quantity])/

CALCULATE(SUM('Order Details'[Quantity]),ALL('Order Details'))

This returns the percentage of all because the filter context for the denominator
is always the total quantity—ALL('Order Details'). The result is shown in
Figure 12-18; the figures are formatted as percentages (right-click, Number Format).

Percentage of Column or Row Total
Figure 12-19 shows the addition of a percentage of column total measure. The DAX
formula for this is:

=SUM('Order Details'[Quantity])/

CALCULATE(SUM('Order Details'[Quantity]),ALL(Products))

This uses ALL(Products) rather than ALL('Order Details').

Figure 12-17 A Northwind pivot table

3 6 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Figure 12-18 Percentage of all

Figure 12-19 Percentage of column

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 6 5

Percentage of Parent
This time, a new measure has been added with the following formula:

=SUM('Order Details'[Quantity])/

CALCULATE(SUM('Order Details'[Quantity]),

ALLEXCEPT(Products,Products[Category]))

Figure 12-20 shows this new measure. The filter context for the denominator is now
the product category.

Customizing Measures for Each Row or Column
Often, you will want a value in the data area to behave differently depending upon the
current row or column filter context. Suppose, for example, that all sales are recorded in
U.S. dollars—apart from the U.K., where sales are recorded in pounds sterling. You may

Figure 12-20 Percentage of parent

3 6 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

want to see the dollar value of U.K. sales. Figure 12-21 shows the result of adding the
following measure to the Order Details table, called DollarSales, with Country from
the Customers table on the rows:

=IF(COUNTROWS(VALUES(Customers[Country]))=1,

IF(VALUES(Customers[Country])="UK",

SUM('Order Details'[Sales Amount]) * 1.5,

SUM('Order Details'[Sales Amount])),

SUM('Order Details'[Sales Amount]))

Please note that DollarSales is different from Sales (=SUM('Order Details'
[Sales Amount])) for the U.K., and uses an exchange rate of 1.5 U.K. pounds for
one U.S. dollar. The IF(COUNTROWS(VALUES())) construct is necessary; otherwise,
the Grand Total row would throw an error. This is because VALUES() returns a table
of more than one row for Grand Total, and the IF() test requires a single row.

Figure 12-21 A measure customized for rows

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 6 7

Changes over Time
Another classic BI requirement is to show changes over time. For example, you may
wish to see increases and decreases in sales from one year to the next. The DAX Date
and Time functions are particularly useful in order to achieve such results. Some of
these functions require contiguous dates. Without contiguous dates, functions, such as
DATEADD() and SAMEPERIODLASTYEAR(), will either result in an error or produce
nonintuitive results. The example here uses ContosoRetailDW, as Northwind lacks
contiguous dates. You will need the DimDate, DimProduct, and FactSales tables.
Make sure that FactSales is related to both DimDate (on DateKey) and DimProduct
(on ProductKey). Add SalesAmount from FactSales to the Values drop-zone. Add
CalendarYear from DimDate to Column Labels and BrandName from DimProduct
to Row Labels. Interestingly, you will see that Adventure Works and Northwind supply
products to Contoso! The example that follows uses DATEADD() to retrieve sales
from the previous year and then compares the value to the current year to ascertain the
change in sales over time. You could also try PARALLELPERIOD(), if you wish. Here is
the DAX to work out a change in sales:

=SUM(FactSales[SalesAmount])-

CALCULATE(SUM(FactSales[SalesAmount]),DATEADD(DimDate[DateKey],-1,YEAR))

Moving Average
This example also uses ContosoRetailDW. The rows are from the DateKey in the
DimDate table, and the first column of values is the SalesAmount column from the
FactSales table. Figure 12-22 shows the result of a moving average measure. The formula
for the measure is:

=CALCULATE(SUM(FactSales[SalesAmount]),DATESBETWEEN(DimDate[Datekey],

FIRSTDATE(DATEADD(DimDate[Datekey],-2,DAY)),

LASTDATE(DimDate[Datekey])))/3

This is a three-day moving average. The divisor is 3, yet DATEADD() uses -2—that’s
going to return three dates including the current date. You can get rid of the first two
entries by testing for blanks. Northwind is not really suitable here as it lacks contiguous
dates.

3 6 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Running Total—Breaking
This example takes us back to the Northwind PowerPivot model. This is a Year-To-Date
example on the Sales Amount. The result is shown in Figure 12-23 and the formula is:

=TOTALYTD(SUM('Order Details'[Sales Amount]),Orders[OrderDate])

This is a breaking (or resetting) total as it starts again for August 1996.

Running Total—Non-Breaking
This running total has a different DAX formula:

=TOTALYTD(SUM('Order Details'[Sales Amount]),

Orders[OrderDate],ALL(Orders))

Figure 12-22 Moving average

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 6 9

The result in the last column in Figure 12-24 is different from the previous example.
This time, the total does not start again for August 1996. Also, some of the quarterly
and monthly totals are different. You should find that the yearly totals are identical to
the previous example (it’s using TOTALYTD()).

Figure 12-23 Running total—breaking

3 7 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Predefining Filters and Sets
One way to improve the end-user experience is to create filters and sets for them. A set
is an MDX term. A set is a defined list of values that you want to appear on Column
Labels and Row Labels. If you predefine filters and sets, the end user doesn’t have to use
Report Filter or slicers or other methods to see the required results.

Figure 12-24 Running total—non-breaking

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 7 1

Predefined Filter
This predefined filter in this example is a measure. It’s been added alongside Sales
Amount. The predefined filter is showing the sales for Davolio. Its formula is:

=CALCULATE(SUM('Order Details'[Sales Amount]),

Employees[LastName]="Davolio")

You can see the results in Figure 12-25. Please note that there is no Report Filter nor
slicer needed to set the filter context for the Employees table to Davolio.

Predefined Set
A predefined set functions pretty much like a table. It allows you to control which
elements are visible to the end user in a pivot table. Some people simply call them sets
or named sets. This is a new topic, so here are the step-by-step instructions:

1. Create a pivot table like the one in Figure 12-26. It’s using Category from the
Products table and Sales Amount from the Order Details table.

2. With the focus in the pivot table, click Fields, Items, & Sets in the Calculations
group of the PivotTable Tools/Options ribbon. This opens the drop-down menu
shown in Figure 12-27.

3. From this drop-down menu, choose Create Set Based on Row Items to open
the New Set dialog. This dialog is shown in Figure 12-28. In this dialog, you can
specify a name for your set and, optionally, a display folder. Without a display folder,
the set will appear under Sets in the PowerPivot Field List—it looks like a regular
table. With a display folder, the set will appear under a “table” with the folder name.
You can accomplish quite a lot in the New Set dialog. For example, you can delete
rows from the set. But here, we’re going to edit the MDX behind the set.

Figure 12-25 A predefined filter

3 7 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

4. Click Edit MDX, and click OK to see the MDX behind the rows in the pivot
table. It’s reproduced here for clarity, as well as being shown in Figure 12-29.

{
([Products].[Category].&[Beverages]),
([Products].[Category].&[Condiments]),
([Products].[Category].&[Confections]),
([Products].[Category].&[Dairy Products]),
([Products].[Category].&[Grains/Cereals]),
([Products].[Category].&[Meat/Poultry]),
([Products].[Category].&[Produce]),
([Products].[Category].&[Seafood]),
([Products].[Category].[All])
}

Figure 12-27 Fields, Items, & Sets drop-down menu

Figure 12-26 Simple pivot table

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 7 3

Figure 12-28 New Set dialog

Figure 12-29 MDX for pivot table rows

3 7 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is MDX, not DAX! MDX is a query language for SSAS cubes—it’s talking
directly to the hidden cube, called PowerPivot Data, behind PowerPivot. MDX
is beyond the scope of this book—if you are interested, please refer to my book,
Practical MDX Queries for Microsoft SQL Server Analysis Services 2008 (McGraw-
Hill/Professional, 2010).

5. Edit the MDX so it looks like the following:

Topcount
(
{
([Products].[Category].&[Beverages]),
([Products].[Category].&[Condiments]),
([Products].[Category].&[Confections]),
([Products].[Category].&[Dairy Products]),
([Products].[Category].&[Grains/Cereals]),
([Products].[Category].&[Meat/Poultry]),
([Products].[Category].&[Produce]),
([Products].[Category].&[Seafood])
},
3,
[Measures].[Sales]
)

There are a few changes in this MDX. ([Products].[Category].[All])
has been removed—this is going to remove Grand Total from the column in the
pivot table. Before the first curly bracket, Topcount (has been added. After
the last curly bracket, , 3, [Measures].[Sales]) has been added. This is
assuming you have a measure called Sales (=SUM('Order Details'[Sales
Amount])) that sums up Sales Amount.

6. You may want to click Test MDX before clicking OK. Your set is visible in the
PowerPivot Field List, under Sets. Your pivot table should look like Figure 12-30.

The rows are showing the top three categories for sales. The third one, in my
example, is Meat/Poultry.

Figure 12-30 A predefined set

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 7 5

7. Remove Sales from Values and add Quantity from Order Details. You should still
see the same three categories. However, these are the top three by sales, not by
quantity. In fact, Meat/Poultry is only number seven by quantity. You can prove this
by replacing the set in Row Labels with Category from Products again and sorting
largest to smallest on quantity. This is really quite powerful stuff! You can display
rows (or columns) with a particular measure, but with the criteria determined by
a non-visible measure. A little MDX gives you lots of control. You could do this
through the GUI (Row Labels, Value Filters, Top 10… and choose a different
measure from the current measure)—however, it involves a bit of work every time.
A set can simply be reused as and when required. The following example would
be a little bit more difficult through the GUI—it shows the second and third top
categories by sales, no matter which measure is being displayed:

Except
(
topcount
(
{
([Products].[Category].&[Beverages]),
([Products].[Category].&[Condiments]),
([Products].[Category].&[Confections]),
([Products].[Category].&[Dairy Products]),
([Products].[Category].&[Grains/Cereals]),
([Products].[Category].&[Meat/Poultry]),
([Products].[Category].&[Produce]),
([Products].[Category].&[Seafood])
},
3,
[Measures].[Sales]),
topcount
(
{
([Products].[Category].&[Beverages]),
([Products].[Category].&[Condiments]),
([Products].[Category].&[Confections]),
([Products].[Category].&[Dairy Products]),
([Products].[Category].&[Grains/Cereals]),
([Products].[Category].&[Meat/Poultry]),
([Products].[Category].&[Produce]),
([Products].[Category].&[Seafood])},
1,
[Measures].[Sales]
)
)

8. If you want to change a set, click Fields, Items, & Sets again. This time, choose
Manage Sets from the drop-down menu. This opens the Set Manager dialog, as
shown in Figure 12-31. Select your set and click Edit to see the Modify Set dialog.
This dialog is the same as the New Set dialog shown earlier in Figure 12-28.

3 7 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

PowerPivot Without Pivot Table Data
So far, this book has used pivot tables (and occasionally pivot charts) to display data from
the PowerPivot model. However, you don’t have to use pivot reports to display data. This
section shows how to visualize PowerPivot model data without doing so in a pivot table.
There are a couple of reasons why you might want to do this. One, you want to create
your own custom front end in an Excel worksheet. Two, you might want to manipulate
the data further with functions from Excel’s formidable arsenal of functions. There are
many ways to access PowerPivot data without a pivot table. You could use VBA in Excel,
or, perhaps, create an SSRS report on a PowerPivot model published to SharePoint.
In this section, two alternative approaches are considered. One exploits the Excel
GETPIVOTDATA() function, and the other uses the Excel CUBE() family of functions.

GETPIVOTDATA()
Maybe this one is cheating slightly. There is still a pivot table, except it might be on a
separate worksheet—which, optionally, you can hide. There is an Excel function called
GETPIVOTDATA(). This function extracts data from a pivot table. You place the function
in a cell that is away from the pivot table, or, better, on a separate worksheet. Fortunately,
this function is self-generating. From a cell, type = in the Excel formula bar, then click on
a value in the data area of a pivot table, then press enter. The GETPIVOTDATA() syntax
to reference the data in the pivot table is generated. Here’s an example:

=GETPIVOTDATA("[Measures].[Sum of Quantity]",A1,

"[Products].[Category]","[Products].[Category].&[Beverages]")

Figure 12-31 Set Manager dialog

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 7 7

The first parameter is a reference to the measure you wish to return. The second
parameter locates the pivot table you wish to reference. Then you can have any number
of parameters that provide the coordinates for the data. Here, it’s going to show the
sales for Beverages.

If you want to write this function by hand, the syntax to reference a pivot table
on a different worksheet is slightly different. Following is the same example, but it’s
referencing a pivot table in Sheet2 (please note the addition of Sheet2!):

=GETPIVOTDATA("[Measures].[Sum of Quantity]",Sheet2!A1,

"[Products].[Category]","[Products].[Category].&[Beverages]")

You can use GETPIVOTDATA() to calculate BI answers that are not so easy through
the pivot table GUI or DAX. For example, you might want to show the sales of two
products from two separate product categories as a percentage of the two product
categories combined.

Should GETPIVOTDATA() not self-generate, it may be turned off. To check this, click
File | Options | Formulas and look at the setting for Use GetPivotData functions for
PivotTable references. Alternatively, check the setting for Generate GetPivotData in the
Options drop-down menu in the PivotTable group of the PivotTable Tools/Options ribbon.

CUBE() Functions
This time, the example uses the Excel CUBE() functions. If these are new to you, here
are the step-by-step instructions:

1. Add a new pivot table to an existing worksheet and position it at A1. If you
add it to a new worksheet it will be positioned at cell B3. Should you do the
latter, please adjust all cell references in these step-by-step instructions—you will need
to move every reference across by one column and down by two rows. Click in the
empty pivot table to activate the PowerPivot Field List. Add Year to the Slicers
Horizontal drop-zone, and Year again to the Report Filter drop-zone. Verify
the Report Filter position as A9:B9—if not, change the reference to B9 that
appears in step 6.

2. Click in cell C9 and enter the following formula:

=CUBEMEMBER("PowerPivot Data","[Measures].[Sales]","Sales")

This assumes you have a measure called Sales that sums the Sales Amount
(=SUM('Order Details'[Sales Amount])). The first parameter is the
connection to PowerPivot—you can check this name by going through PivotTable
Tools/Options | Data | Change Data Source | Connection Properties. This opens
the Connection Properties dialog. The connection name is at the top of this
dialog. The full connection string is on the Definition tab. The second parameter
of our formula is the measure to show, and the third parameter is a caption.

3 7 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

3. Click in cell A10. Enter the following formula:

=CUBESET("PowerPivot Data","[Products].[Category].[All].Children",
"Category")

This is using MDX to create the children of the All member of Category (for
example, Beverages). The third parameter is a caption. Further parameters, not
shown here, allow you to specify a sort order and a measure to sort on. For a
full discussion of the CUBE() functions, you are referred to Excel Help. To
understand the CUBE() functions, it helps to have a little knowledge of MDX.

4. Click in cell A11 and enter the following formula:

=IFERROR(CUBERANKEDMEMBER("PowerPivot Data",A10,ROW(A1)),"")

This formula is going to retrieve the first product category, Beverages, from the set
defined in cell A10. ROW(A1) returns 1, but you can’t use 1, as this cell is going to
be copied down and we want it to return the second category, then the third, and
so on. Hard-coded numerals are, well, hard-coded. The IFERROR() function is to
suppress nonexistent categories, if we copy too far down.

5. Copy cell A11 from A12 to about A20. You should see a total of eight categories
(including Beverages). You may want to widen column A, to display the complete
names of the categories.

6. Click in cell B11 and enter this formula:

=IFERROR(CUBEVALUE("PowerPivot Data",$A11,$B$9,$C$9),"")

This function is referencing Beverages (A11) and the report filter on Year (B9)
and the Sales measure (C9). In other words, it’s returning the Sales for Beverages
for the current filter on Year. You may have to widen the column for the number
to display in non-scientific format.

7. Copy B11 from B12 to about B20. Hopefully, you can see the sales for each
category. Experiment with the Year filter. My result is shown in Figure 12-32.

8. Instead of a Report Filter on Year, you may prefer to use the Year slicer. It’s also
probably overkill to have Year in both a Report Filter and a slicer, as here. If you
do reference the slicer, the formula for B11 might look like this:

=IFERROR(CUBEVALUE("PowerPivot Data",$A11,Slicer_Year,$C$9),"")

Please note the third parameter of CUBEVALUE() now references the slicer. To
verify the name of a slicer, open the Slicer Settings dialog and check the Name
to use in formulas entry. The slicer name is not enclosed in quotes. In addition,
this example formula assumes that Excel column and row references are still
valid. If you want to use a slicer, it’s probably a good idea to add the slicer before

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 7 9

you start using cell references. Please note that adding or removing entries in the
PowerPivot Field List drop-zones may invalidate any cell references you may
have—or lose your CUBE() function formulas altogether. If you are interested,
you can view the MDX behind CUBERANKEDMEMBER() and CUBEMEMBER(). To
do so, view the Immediate Window in VBA (press alt-f), type the following
command, and press enter:

? ActiveCell.MDX

Self-Joins
Self-joins are not supported in PowerPivot. Here is the SQL to denormalize the
Northwind Employees table:

select E.EmployeeID, E.LastName, E.FirstName,

M.LastName + ', ' + M.FirstName as Manager from employees as E

left outer join employees as M

on E.ReportsTo = M.EmployeeID

Now you can analyze sales by employee by manager. This example is also in Appendix A
about SQL queries for PowerPivot, but included here in case you miss it in Appendix A.

Figure 12-32 PowerPivot data not in pivot table

3 8 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Data Mining
Appendix C is an introduction to writing DMX queries for PowerPivot. A DMX query
allows you to return data from an SSAS data mining model or mining structure. There is
another way to use data mining data without having to write DMX. If you download the
Data Mining Add-in for Excel, you can generate data mining data in a worksheet with
no writing of DMX yourself required. You can then import or link the worksheet into
PowerPivot. You have to use the Table Tools/Analyze ribbon and not the Data Mining
ribbon—the latter ribbon uses SSAS graphical interfaces and does not create data in a
worksheet. The add-in is downloadable from www.sqlserverdatamining.com. As of this
writing, only the Excel 2007 version was available, but it should work with Excel 2010
(32-bit only).

SSRS
Very early in this book, there was a discussion of importing data from an SSRS report
into a PowerPivot model. You can also export from an SSRS report into a PowerPivot
model—use the Export to Data Feed button, while viewing a report in Report
Manager, to do so. You can even reverse the whole process and base an SSRS report
on a PowerPivot model. To do this, you must first have published your PowerPivot for
Excel model to PowerPivot for SharePoint.

SharePoint
If you want to share your PowerPivot for Excel models and pivot reports, you can
publish from Excel to SharePoint. Go through File | Save & Send | Save to SharePoint
to accomplish this. Naturally, for this to work you have to have SharePoint (2010 not 2007),
and that means a 64-bit SharePoint server. In addition, you will need SQL Server 2008
R2 and SSAS installed in SharePoint-integrated mode. Further steps involve enabling
PowerPivot for SharePoint and Excel Services within SharePoint administration.
PowerPivot for SharePoint uses SSAS 2008 R2 in integrated mode to look after the data.
Excel Services is responsible for rendering the workbook containing the PowerPivot
pivot reports for thin clients, such as Internet Explorer.

Is It Really a Cube?
I hesitated before adding this topic—how to see PowerPivot as a cube. Please do not
try this on an important PowerPivot model—if you change the cube design, you can
easily invalidate the model! Copy an Excel workbook containing a PowerPivot model.
Change the file extension from .xlsx to .zip. Unzip the zip file. In the folder called xl,
open the folder called customData. In this last folder is a file called item1.data—this is

C h a p t e r 1 2 : A F e w I d e a s : P o w e r P i v o t a n d D A X S o l u t i o n s 3 8 1

the cube data behind PowerPivot. Copy item1.data to your SSAS backup directory and
change the file extension from .data to .abf (Analysis Services backup file). You can now
restore the backup to an SSAS database and cube—this only works with SSAS 2008
R2 in SharePoint-integrated mode (or in-memory VertiPaq mode).

How Old Is Nancy?
Many years ago, when people learned SQL for SQL Server with the Northwind
database, there was a classic query. It was called “Nancy married the CEO.” The idea
was to practice the SQL Update statement and change Nancy’s Title from Ms. to Mrs.
and her LastName from Davolio to Fuller. If you look at the self-join on the Employees
just above, Andrew Fuller has no manager—he’s the boss!

This, possibly, will be the DAX equivalent of that SQL classic. It’s called “How old is
Nancy.” Here’s the DAX formula to work out age (on the Northwind Employees table):

=YEAR(TODAY())-YEAR(Employees[BirthDate])

It seems a shame to end a book on something that doesn’t always give the correct
result—that is, if you try it any time of the year apart from later on in December. Here’s
the one that does work (both results are shown in Figure 12-33):

=IF(MONTH(TODAY())>MONTH(Employees[BirthDate]),

YEAR(TODAY())-YEAR(Employees[BirthDate]),

IF(AND(MONTH(TODAY())=MONTH(Employees[BirthDate]),

DAY(TODAY())>=DAY(Employees[BirthDate])),

YEAR(TODAY())-YEAR(Employees[BirthDate]),

(YEAR(TODAY())-YEAR(Employees[BirthDate]))-1))

Can you find a more elegant way of calculating Nancy’s age?
That’s it, some nice DAX to finish. Well done if you got this far! Finito (oh, maybe

apart from just three appendixes).

Figure 12-33 How old is Nancy?

This page intentionally left blank

Appendixes: Queries
for PowerPivot

Part IV

This page intentionally left blank

SQL Queries
for PowerPivot

Appendix A

3 8 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is a short appendix. It’s aimed at those readers who need a brief introduction to
SQL, with some basic syntax examples. We also discuss the reasons for writing
your own queries to import data into PowerPivot, rather than simply importing

complete tables. A few query fundamentals are covered: filtering, sorting, grouping, and
denormalizing data with joins and self-joins. There are also examples of using a stored
procedure and writing SQL queries against Excel.

Key concepts SQL, selecting columns, calculated columns, filtering data, sorting
data, grouping data, denormalizing data with joins and self-joins, stored procedures,
querying Excel

Why Write SQL Queries?
Structured Query Language (SQL) is a standard language for extracting data from
a relational database. When you connect to many of the relational data sources in
PowerPivot, you have the option to write your own queries, rather than simply choosing
table names. Among other sources, this would apply to SQL Server, Access, Oracle,
and IBM DB2. All of these products support the SQL language in queries. The SQL
language is generic and widely popular—and there is an agreed standard called ANSI
SQL. Most vendors adhere very closely to this standard, although each dialect of SQL
(for example, T-SQL in SQL Server or PL/SQL in Oracle) may depart slightly from
that standard and incorporate many proprietary extensions. This appendix concentrates
on writing SQL queries for SQL Server (that is, in T-SQL or Transact-SQL dialect).
However, most of the syntax is generic and also relevant for other software, and you
should be able to adapt the queries for your own database vendor (of course, you will
have to change database, table, and column names!).

If you decide to write your own queries, you can reduce the amount of work you
have to do in the PowerPivot window. This has a number of potential benefits. One, for
calculated columns, you may be more familiar with doing this in SQL, rather than in
DAX, and hence, find it easier. Two, you can use stored procedures to import the data.
Three, you can handle self-joins, which are not supported in this release of PowerPivot.
Four, the evaluation and recalculation of some calculated columns may be faster, if
done in SQL rather than DAX. Five, you may be able to prepare data in a way that is
not possible in PowerPivot (for example, outer joins or complex filters). Six, you may
be able to access other external data sources from your queries that are not options in
PowerPivot (for example, you can use DMX inside a T-SQL linked server query to
extract data from a data mining model).

A p p e n d i x A : S Q L Q u e r i e s f o r P o w e r P i v o t 3 8 7

If you are interested in learning a bit more about SQL (in particular, T-SQL for
SQL Server), refer to my book Practical SQL Queries for Microsoft SQL Server 2008
published by McGraw-Hill (although nearly all of the SQL in the book is generic).
Almost all of the examples here are taken from that book.

Where to Create and Test SQL Queries
You could enter the SQL directly in the PowerPivot Table Import Wizard. However,
many software vendors provide elegant and powerful query editors. These often provide
substantial benefits in entering, testing, and debugging your queries. This appendix
concentrates on SQL Server, which has a client tool called SQL Server Management
Studio (SSMS). This tool has color-coding, line numbering, word wrap, IntelliSense,
context-sensitive help, debugging aids, drag-and-drop of object names, drag-and-drop
of functions, metadata view of a database and its objects, and easy visualization of
query results. So, maybe it’s better to prepare your query in SSMS (or the query editor
applicable to your database vendor) first. Once you are happy with the results, then it’s
a simple copy-and-paste into PowerPivot.

Where to Use SQL Queries in PowerPivot
If you are importing from SQL Server or Access, click From Database in the Get
External Data group of the Home ribbon. You then choose either From SQL Server
or From Access in the drop-down menu. If you wish to import from another relational
source, click From Other Sources in the Get External Data group and choose the
relevant source. All of these are entry points into the Table Import Wizard. After you
set up connection information, you will see the Choose How to Import the Data dialog.
The dialog is shown in Figure A-1. In this dialog, choose Write a Query That Will
Specify the Data to Import and click Next. The next dialog is Specify a SQL Query.
This dialog is shown in Figure A-2. In this dialog, type or copy and paste your SQL
into the SQL Statement text box. There is also a Design button that will take you into
a graphical query designer (SQL Server import only) that can generate some of the
SQL for you to get you started. When your query is finished, click Validate to check
the syntax, and then click Finish. The data retrieved by your query will be displayed in
a new PowerPivot table.

3 8 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

If you get it wrong, you can alter the SQL retrospectively. You do so by clicking the
Table Properties button in the Properties group of the Design ribbon. This opens the
Edit Table Properties dialog, where you can amend your SQL statement.

Figure A-1 Choose How to Import the Data dialog

A p p e n d i x A : S Q L Q u e r i e s f o r P o w e r P i v o t 3 8 9

Figure A-2 Specify a SQL Query dialog

SQL Examples
If you want to try these examples, you will need SQL Server 2008 or 2008 R2, and the
AdventureWorksDW2008 relational database (available from www.codeplex.com). You
should also be able to adapt many of the queries to work with SQL Server 2005 and
the AdventureWorksDW relational database (also available from www.codeplex.com),
or the new SQL Server 2008 R2 ContosoRetailDW sample database. One example
(on self-joins) uses Northwind, so if you followed the practicals in Chapters 1 and 2,
you can amend your PowerPivot model.

3 9 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Selecting Specific Columns
This is a simple column list (PowerPivot table result shown in Figure A-3):

select FirstName, LastName from DimCustomer

Using a T-SQL Function
Here, a simple function is used to manipulate data (PowerPivot table result shown in
Figure A-4):

select Birthdate, datediff(yy,birthdate,GETDATE()) as Age

from DimCustomer

Unless you use an asterisk for all columns, every column must have a name. For
example, the second column here would result in an error without the alias, Age. The
appearance of the Birthdate column is governed by the setting in the Format drop-down
on the Home ribbon.

Figure A-4 A SQL calculated column

Figure A-3 Specific columns

A p p e n d i x A : S Q L Q u e r i e s f o r P o w e r P i v o t 3 9 1

Suppressing Duplicates
This query eliminates duplicate values (PowerPivot table result shown in Figure A-5):

select distinct EnglishOccupation from DimCustomer

Creating Buckets
This technique is very useful when you want to reduce a large range of values into a small
range of bucket values. Some people call this discretization, or even bucketization!
The PowerPivot table result is shown in Figure A-6.

select

LastName,

case

when yearlyincome <= 30000 then 'Low'

when yearlyincome <= 70000 then 'Medium'

else 'High'

end

as [Income Group]

from DimCustomer

Figure A-5 Distinct values

Figure A-6 Buckets of data

3 9 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Implementing a Filter
This is an example of using the classic SQL Where clause to filter data (PowerPivot
table result shown in Figure A-7):

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation not in

('partial college','high school','graduate degree')

A More Complex Filter
Here is another filtering query (PowerPivot table result shown in Figure A-8):

select FirstName, LastName, EnglishEducation, EnglishOccupation

from DimCustomer

where (englisheducation = 'Partial College' and

englishoccupation = 'Clerical') or englishoccupation = 'Manual'

Figure A-8 Another filtering example

Figure A-7 Filtering data

A p p e n d i x A : S Q L Q u e r i e s f o r P o w e r P i v o t 3 9 3

Using Wildcards
In this query, a wildcard has been used to filter the data (PowerPivot table result shown
in Figure A-9):

select FirstName, LastName from DimCustomer

where LastName like 'Li%'

Sorting Records
Here, you are retrieving the top ten percent by income (PowerPivot table result shown
in Figure A-10):

select top 10 percent LastName, FirstName, YearlyIncome from DimCustomer

order by YearlyIncome desc

Figure A-9 Wildcard search

Figure A-10 Top 10 percent earners

3 9 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Denormalizing Data
As an alternative to the DAX RELATED() function, you can denormalize your data
before it reaches PowerPivot with a SQL Inner Join (PowerPivot table result shown in
Figure A-11):

select EnglishProductName, EnglishProductSubcategoryName

from DimProduct inner join DimProductSubcategory

on DimProduct.ProductSubcategoryKey =

DimProductSubcategory.ProductSubcategoryKey

Self-Join
The Northwind Employees table is joined to itself. This is called a self-join, and this type
of join is not supported in PowerPivot. If you wanted to browse employee sales by manager
in a pivot table, you have to join the table to itself in a SQL query. Here’s the syntax for
joining the Employees table to itself (PowerPivot table result shown in Figure A-12):

select E.EmployeeID, E.LastName, E.FirstName,

M.LastName + ', ' + M.FirstName as Manager from employees as E

left outer join employees as M

on E.ReportsTo = M.EmployeeID

Please note this is a left outer join, not an inner join. An inner join would not return
Andrew Fuller as an employee—because he is the CEO of Northwind and has no
manager! You may want to include him, as he has sales in the Orders table. This query
is against the Northwind and not the AdventureWorksDW2008 database.

Figure A-11 Denormalized data

A p p e n d i x A : S Q L Q u e r i e s f o r P o w e r P i v o t 3 9 5

Grouping Data
You may want to group imported data, and perhaps use SQL aggregate functions, such
as SUM(), rather than the DAX equivalents. Following is an example using the Group
By clause (PowerPivot table result shown in Figure A-13):

select ProductKey, OrderDateKey, sum(OrderQuantity) As SumOrderQuantity
from FactInternetSales group by ProductKey, OrderDateKey

Stored Procedure
Often, you may not have permissions to query tables directly. Perhaps your SQL Server
DBA only allows access to data through stored procedures—if that is so, you can’t write
queries against the tables, nor can you import the tables directly. Here’s some sample

Figure A-12 Self-join data

Figure A-13 Grouping data

3 9 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

code to create a parameterized stored procedure (sometimes stored procedures can
return data faster than a normal Select statement):

create procedure spGetCustomersByEducation

@education nvarchar(40)

as

begin

set nocount on

select Firstname, Lastname, EnglishEducation, EnglishOccupation

from DimCustomer

where englisheducation = @education

end

Whether you create your own stored procedures, or use those created by others, you
need to call the stored procedure to return the data. Here’s an example that returns data
from the stored procedure created in the preceding code (PowerPivot table result shown
in Figure A-14):

exec spGetCustomersByEducation @Education = 'Partial College'

SQL Queries for Excel
You may be surprised to learn that you can write SQL queries against Excel worksheets!
You might also ask why anyone should want to do so, when PowerPivot supports
imports from Excel worksheets directly. The answer may be that you want to include
complex filters and/or join the Excel data to a table from another source. T-SQL supports
the concept of a linked server—the linked server does not have to be SQL Server, yet
you can query it from T-SQL. Here is some sample code to set up Excel as a linked

Figure A-14 Stored procedure result data

A p p e n d i x A : S Q L Q u e r i e s f o r P o w e r P i v o t 3 9 7

server using T-SQL (please note, this is no longer generic SQL and may not work in
other SQL dialects):

exec sp_addLinkedServer @server='MyExcel',

@srvproduct='ACE 12.0',

@provider='Microsoft.ACE.OLEDB.12.0',

-- this is a comment

-- in the next line, specify a valid path to an Excel workbook

@datasrc='C:\users\art\documents\book1.xlsx',

@provstr='Excel 12.0;HDR=No'

There are three occurrences of “12.0” in the code. The number you specify may be
different. You can establish the correct number (it’s actually the Office version number)
by looking at linked server providers in Object Explorer. After setting up the linked
server, you can then query the Excel workbook using SQL:

select * from myexcel...sheet1$

If you are tempted to try this, there are a few things to consider. First, your SQL
Server DBA may disapprove of permanent linked servers (there are alternatives, such
as Openrowset). Second, you’ll need some sensible data in the workbook—it’s helpful
to have column headers in the first row (if you do, replace HDR=No with HDR=Yes in
the above syntax). Third, there are three dots between the linked server name and the
worksheet name in the preceding syntax (for SQL Server users, Excel does not have a
concept of a database name, nor a schema name—the dots are placeholders). Fourth,
instead of the worksheet name (sheet1$), you can use the name of an Excel named
range—it’s also possible to query cells and unnamed ranges.

Of course, there is rather more to SQL than this! This appendix is designed to help
readers who are not familiar with SQL get started with writing their own SQL queries
for PowerPivot.

This page intentionally left blank

MDX Queries
for PowerPivot

Appendix B

4 0 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

MultiDimensional eXpressions (MDX) is a very powerful query language for
extracting data from cubes. While PowerPivot can generate sophisticated
MDX for you, you may want the total control that writing your own MDX

gives you. You can use MDX to import from either an SSAS cube or a PowerPivot
model that has been published to PowerPivot for SharePoint. This appendix demonstrates
some of the fundamentals of MDX. It also shows how best to adapt your MDX for
PowerPivot.

Key concepts Cube dimensions and measures, Crossjoin() function,
navigating hierarchies, ranges, sorting, filtering, calculated measures, key
performance indicators (KPIs), natural user hierarchies, attribute hierarchies

Why Write MDX Queries?
MDX is a standard language for extracting data from a multidimensional database.
Specifically, it is the language used to query cubes in an SSAS database or to extract
data from a PowerPivot model that has been published to PowerPivot for SharePoint.
Both are supported from PowerPivot for Excel. Hyperion Essbase and SAP BW cubes
also use MDX, but these are not directly supported by PowerPivot.

Writing your own MDX gives you more power and flexibility. There is a graphical
query designer for MDX in PowerPivot—it’s very good, but sometimes you need just
that little extra control. In addition, you can avail yourself of the extra power of the
SSMS MDX query editor. There is one small proviso—sometimes, the MDX you write
in SSMS is better expressed in a slightly different way for PowerPivot. This appendix
contains a couple of examples that show this.

If you are interested in learning a bit more about MDX (in particular, MDX for
SQL Server Analysis Services), you are referred to my book Practical MDX Queries for
Microsoft SQL Server Analysis Services 2008 (McGraw-Hill/Professional, 2010). Most
of the examples in this appendix are adapted from that book—the rewritten examples
(rewritten to provide better data specifically for PowerPivot) are new. All of the
examples are against an SSAS cube, not a PowerPivot model published to SharePoint,
although the principles are the same.

Where to Create and Test MDX Queries
MDX is a standard language for querying cubes. The MDX discussed here is for
SSAS. The MDX used by other vendors of multidimensional databases may differ in
minor ways. In PowerPivot, you can only use MDX directly against SSAS cubes or
PowerPivot models on SharePoint.

It’s probably a good idea to write and test your MDX queries in SSMS. If they don’t
work there, they are not going to work in PowerPivot.

A p p e n d i x B : M D X Q u e r i e s f o r P o w e r P i v o t 4 0 1

Where to Use MDX Queries in PowerPivot
You start from the Home ribbon in PowerPivot. Click From Database in the Get
External Data group on the ribbon. In the resulting drop-down, choose From Analysis
Services or PowerPivot. You’ll need to set up the connection to an SSAS server and a
database (although you could alternatively provide the URL to a PowerPivot workbook
in SharePoint) before clicking Next. The next dialog is entitled Specify a MDX Query.
This dialog is shown in Figure B-1. Within this dialog, type or paste your MDX (it’s
a good idea to copy it from SSMS) into the MDX Statement text box. Click Validate,
and then click Finish.

Figure B-1 Specify a MDX Query dialog

4 0 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

MDX Examples
If you want to try these examples, you will need SQL Server Analysis Services 2008 or
2008 R2, and the Adventure Works DW 2008 multidimensional database (available
from www.codeplex.com), which contains the Adventure Works cube used in the
following queries. You should also be able to adapt many of the queries to work with
SQL Server Analysis Services 2005 and the Adventure Works DW multidimensional
database (also available from www.codeplex.com). The MDX syntax is simply given,
with nothing much by way of explanation. A full analysis of MDX is beyond the scope
of this book.

A Basic MDX Query
select [Date].[Calendar].[Calendar Year] on columns

from [Adventure Works]

select {[Date].[Calendar].[Calendar Year].members} on columns

from [Adventure Works]

In this example, you have two versions of the same query. The first is informal syntax,
and the second is more formal, which many consider to be better practice. There is
no measure in this query. Therefore, it uses the default measure for the cube, Reseller
Sales Amount. The resulting cellset looks great in SSMS, but not in PowerPivot. The
years are returned as column headers, not as part of the data in the PowerPivot table. It
would be nice to see the years in the rows, not as column headers. Column headers are
metadata, and rows are data. This is a common problem when importing via an MDX
query. The solution is not to place non-measure dimension members on the Columns
axis of the MDX query (see the next query). The resulting table is shown in Figure B-2.

Having non-measure dimensions on the Columns axis is not allowed in the MDX
graphical query designer in PowerPivot. There is a Design button in the Specify a
MDX Query dialog. This opens the graphical designer, where you can click on the last
button on the toolbar (Design Mode) to switch to text mode. If you paste in this query,
and try to execute the query, you receive an error message indicating that the designer

Figure B-2 PowerPivot table

A p p e n d i x B : M D X Q u e r i e s f o r P o w e r P i v o t 4 0 3

only supports measures on columns. The error message is shown in Figure B-3. It’s
probably better not to do this, unless you decide not to use the graphical query designer!
But the error is a sensible one—non-measure dimensions on columns don’t look good
in PowerPivot, and they are of limited use in a pivot table. The next query is much better.

A Basic MDX Query Rewritten to Give Better Results
select {[Measures].[Reseller Sales Amount]} on columns,

{[Date].[Calendar].[Calendar Year].members} on rows

from [Adventure Works]

This is a far nicer query. It looks better as a PowerPivot table and will make a
subsequent pivot table more meaningful. The non-measure dimension (Date) has
been placed on the Rows axis. The default measure is made explicit and placed on the
Columns axis. The resulting table is shown in Figure B-4.

Figure B-3 Error message

Figure B-4 PowerPivot table

4 0 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Adding Another Dimension
select {[Date].[Calendar].[Calendar Year].members} on columns,

{[Product].[Product Categories].[Category].members} on rows

from [Adventure Works]

This query sees the addition of a second non-measure dimension (Product). Once again,
it doesn’t look satisfactory as a PowerPivot table. The resulting table is shown in Figure B-5.

Adding Another Dimension Rewritten
to Give Better Results
select {[Measures].[Reseller Sales Amount]} on columns,

{crossjoin({[Date].[Calendar].[Calendar Year].members},

{[Product].[Product Categories].[Category].members})} on rows

from [Adventure Works]

Here we have the same query but rewritten to produce sensible results for PowerPivot.
When you have more than one non-measure dimension, it’s a good idea to place them
both on the Rows axis and only have a measure or measures on the Columns axis. To
place two dimensions on the same axis, you can use the MDX Crossjoin() function
as here. The resulting table is shown in Figure B-6. You may see an alternative syntax
that uses the asterisk (*) or multiplication symbol, instead of explicitly using the
Crossjoin() function. Indeed, this is the syntax generated by the graphical query
designer.

Crossjoin() Query
Select {[Measures].[Internet Sales Amount],

[Measures].[Reseller Sales Amount]} on columns,

{crossjoin({[Date].[Calendar].[Calendar Year].members},

{[Date].[Month of Year].[Month of Year].members})} on rows

from [Adventure Works]

Figure B-5 PowerPivot table

A p p e n d i x B : M D X Q u e r i e s f o r P o w e r P i v o t 4 0 5

You can even have different attributes from the same dimension in a Crossjoin().
There is one proviso; they must be from different hierarchies in the dimension—here
the Calendar (for SSAS veterans, it’s a user hierarchy) and the Month of Year (this is an
attribute hierarchy) hierarchies are used. The resulting table is shown in Figure B-7.

More Complex Crossjoin() Query
select

{crossjoin({[Sales Territory].[Sales Territory].[Country].members},

{crossjoin({[Product].[Product Categories].[Category].members},

{[Measures].[Internet Order Count],[Measures].[Reseller Order Count]})})}

on columns,

{crossjoin({[Date].[Calendar].[Calendar Year].members},

{[Date].[Month of Year].[Month of Year].members})} on rows

from [Adventure Works]

Figure B-6 PowerPivot table

Figure B-7 PowerPivot table

4 0 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This example is getting more sophisticated (and complex). It involves three dimensions,
four dimension hierarchies, and two measures. The resulting table is shown in Figure B-8.

More Complex Crossjoin() Query
Rewritten to Give Better Results
Select {[Measures].[Internet Order Count],

[Measures].[Reseller Order Count]}

on columns,

{crossjoin({[Sales Territory].[Sales Territory].[Country].members},

{crossjoin({[Product].[Product Categories].[Category].members},

{crossjoin({[Date].[Calendar].[Calendar Year].members},

{[Date].[Month of Year].[Month of Year].members})})})}

on rows

from [Adventure Works]

Hopefully, this is a big improvement. You may have to scroll to see measures with
values. Please note that only measures appear on the Columns axis. The Rows axis has a
Crossjoin() within a Crossjoin() within a Crossjoin(). The resulting table is
shown in Figure B-9.

Figure B-8 PowerPivot table

Figure B-9 PowerPivot table

A p p e n d i x B : M D X Q u e r i e s f o r P o w e r P i v o t 4 0 7

A Navigation Query
select {[Measures].[Internet Sales Amount]} on columns,

{descendants([Customer].[Customer Geography].[Country].[France],

[Customer].[Customer Geography].[City])}

on rows

from [Adventure Works]

The navigation functions within MDX are very useful. PowerPivot has converted a
Descendants() self to a Descendants() self_and_before when flattening
the result set. Here’s an example using Descendants(). The resulting table is shown in
Figure B-10.

A Range Query
select {[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]:

[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003]} on columns,

{[Measures].[Reseller Sales Amount]} on rows

from [Adventure Works]

This time, it’s a range query with the colon (:) operator. The results may not be to
your liking. The resulting table is shown in Figure B-11. Please note that the range
operator requires that both members belong to the same attribute hierarchy or to the
same level of a user hierarchy.

Figure B-10 PowerPivot table

Figure B-11 PowerPivot table

4 0 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

A Range Query Rewritten to Give Better Results
select {[Measures].[Reseller Sales Amount]} on columns,

{[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]:

[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003]} on rows

from [Adventure Works]

Let’s have another go at the range query. This should look nicer. If you are familiar
with MDX, PowerPivot adds a lovely twist. It also brings back the user hierarchy above
the quarters as it flattens the result set—you won’t see this in SSMS. The resulting table
is shown in Figure B-12.

Attribute or User Hierarchies?
select {[Measures].[Reseller Sales Amount]} on columns,

{[Date].[Calendar Quarter].[Calendar Quarter].[Q1 CY 2003]:

[Date].[Calendar Quarter].[Calendar Quarter].[Q3 CY 2003]} on rows

from [Adventure Works]

The previous query returned the user hierarchy above the quarter. If you don’t want
the hierarchy, then you can use an attribute hierarchy, as here. The resulting table is
shown in Figure B-13.

Figure B-12 PowerPivot table

Figure B-13 PowerPivot table

A p p e n d i x B : M D X Q u e r i e s f o r P o w e r P i v o t 4 0 9

Sorting Results on a User Hierarchy
Select {[Measures].[Internet Sales Amount]} on columns,

{order({[Product].[Product Categories].[Subcategory].members},

[Measures].[Internet Sales Amount],bdesc)} on rows

from [Adventure Works]

This is a classic sort that breaks the Product Categories hierarchy—the subcategories
are sorted regardless of the category to which they belong. Note that it returns the
hierarchy above the subcategory. The resulting table is shown in Figure B-14.

Sorting Results on an Attribute Hierarchy
select {[Measures].[Internet Sales Amount]} on columns,

{order({[Product].[Subcategory].[Subcategory].members},

[Measures].[Internet Sales Amount],bdesc)} on rows

from [Adventure Works]

If you don’t want to return the hierarchy above the subcategory, use an attribute
hierarchy, rather than a user hierarchy, as there’s no user hierarchy to break, then you
can use desc rather than bdesc for the Order() function. The resulting table is
shown in Figure B-15.

Figure B-14 PowerPivot table

Figure B-15 PowerPivot table

4 1 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Filtering Results
select {[Measures].[Internet Sales Amount],

[Measures].[Reseller Sales Amount]} on columns,

{filter({[Product].[Product Categories].[Category].members},

[Measures].[Internet Sales Amount] > 750000 or

[Measures].[Internet Sales Amount] < 500000)} on rows

from [Adventure Works]

The Filter() function in MDX operates like a Where clause in SQL. The
resulting table is shown in Figure B-16.

A Calculated Measure
with member [Measures].[Customer Sales] as

[Measures].[Internet Sales Amount]

member [Measures].[Retailer Sales] as

[Measures].[Reseller Sales Amount]

member [Measures].[Total Sales] as

[Measures].[Internet Sales Amount] + [Measures].[Reseller Sales Amount]

select {[Measures].[Customer Sales],[Measures].[Retailer Sales],

[Measures].[Total Sales]} on columns,

{[Date].[Calendar].[Calendar Year].members} on rows

from [Adventure Works]

Here you are extending the cube by adding an ad-hoc measure on the fly. Please
remember that a lot of this work can be done graphically—do you recall the Calculated
Member Builder dialog from much earlier in the book? The resulting table is shown in
Figure B-17.

Figure B-16 PowerPivot table

Figure B-17 PowerPivot table

A p p e n d i x B : M D X Q u e r i e s f o r P o w e r P i v o t 4 1 1

KPI Query
with member [Measures].[Actual] as

KPIValue("Product Gross Profit Margin"),format_string = "Percent"

member [Measures].[Target] as

KPIGoal("Product Gross Profit Margin"),format_string="Percent"

member [Measures].[Status] as

KPIStatus("Product Gross Profit Margin")

member [Measures].[Trend] as

KPITrend("Product Gross Profit Margin")

select {crossjoin({[Date].[Fiscal].[Fiscal Year].[FY 2003],

[Date].[Fiscal].[Fiscal Year].[FY 2004]},{[Measures].[Actual],

[Measures].[Target],[Measures].[Status],[Measures].[Trend]})}

on columns,

{[Product].[Product Categories].[Category].members} on rows

from [Adventure Works]

This is how you pull key performance indicators (KPIs) out of the SSAS cube. It’s
valid MDX but doesn’t look that good in a PowerPivot table. It’s the same problem as
before, with the non-measure dimensions on the Columns axis. The resulting table is
shown in Figure B-18.

KPI Query Rewritten to Give Better Results
with member [Measures].[Actual] as

KPIValue("Product Gross Profit Margin"),format_string = "Percent"

member [Measures].[Target] as

KPIGoal("Product Gross Profit Margin"),format_string="Percent"

member [Measures].[Status] as

KPIStatus("Product Gross Profit Margin")

member [Measures].[Trend] as

KPITrend("Product Gross Profit Margin")

select {[Measures].[Actual],

[Measures].[Target],[Measures].[Status],[Measures].[Trend]}

Figure B-18 PowerPivot table

4 1 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

on columns,

{crossjoin({[Date].[Fiscal].[Fiscal Year].[FY 2003],

[Date].[Fiscal].[Fiscal Year].[FY 2004]},

{[Product].[Product Categories].[Category].members})}

on rows

from [Adventure Works]

This is our last query in this appendix. It fixes the previous query. The resulting table
is shown in Figure B-19.

MDX is quite a powerful language! We have seen only a few queries in this appendix.
However, there may be just enough to get you started writing your own MDX queries.

Figure B-19 PowerPivot table

DMX Queries
for PowerPivot

Appendix C

4 1 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

You may have SSAS data mining structures and data mining models. You
normally query these objects using Data Mining eXtensions (DMX), perhaps
from SQL Server Management Studio (SSMS) or from SQL Server Reporting

Services (SSRS). Although this release of PowerPivot supports the graphical design of
SQL and MDX queries, it does not support the graphical design of DMX queries. You
can, however, write your own DMX. You do so by connecting to an SSAS source and
entering the DMX into the MDX Statement area of the Specify a MDX Query dialog,
in the Table Import Wizard. Another way is to embed your DMX query within a SQL
query and import the data returned from the outer SQL query. To do that, you connect
to a SQL Server source and enter the SQL/DMX into the SQL Statement area of
the Specify a SQL Query dialog of the Table Import Wizard. Alternatively, you can
query some data mining data from Excel itself—for this you will need to download the
data mining add-in for Excel (the data mining results are shown in an Excel worksheet
when you use the Table Tools/Analyze ribbon, rather than the Data Mining ribbon),
you can then import or link into the PowerPivot window from the Excel worksheet).
Stand-alone DMX, or DMX embedded in SQL, works for DMX Cases, Content,
Prediction, and other queries. This chapter includes sample code for a few Cases, Content,
and Prediction queries.

Key concepts DMX, linked servers, Cases queries, Content queries, Prediction
queries

Why Write DMX Queries?
DMX, or Data Mining eXtensions, is a standard language for extracting data from data
mining models. Specifically, it is the language used to query data mining structures and
data mining models in an SSAS database. By using DMX, you are no longer confined
to SSAS imports from cubes only—you can also import data from mining models. You
can write your own stand-alone DMX queries during data import. One other way to
get DMX imports working is to set up a SQL Server linked server to SSAS, and embed
the DMX within a SQL query. This appendix shows both approaches.

If you are interested in learning a bit more about DMX (in particular, DMX for
SQL Server Analysis Services), refer to my book, Practical DMX Queries for Microsoft
SQL Server Analysis Services 2008 (McGraw-Hill /Professional, 2010). Most of the
examples here are taken from that book.

Where to Create and Test DMX Queries
DMX is a standard language for querying data mining models. The DMX discussed
here is for SSAS. The DMX used by other vendors of data mining software may differ
in minor ways.

A p p e n d i x C : D M X Q u e r i e s f o r P o w e r P i v o t 4 1 5

You need to create and then test your DMX queries—first, as pure DMX, and,
second, as DMX embedded inside SQL (specifically, T-SQL for SQL Server), if you
opt to use a linked server. The best place to do both is within SSMS. From the SSMS
Object Explorer, right-click on your SSAS database and choose New Query | DMX.
Write and validate your DMX and copy it to the Clipboard. If you prefer to embed
the DMX within SQL, then right-click on a SQL Server database (any one will do,
unless you need to reference a SQL Server table or view from the DMX) and choose
New Query. This will open the SQL query editor. Write a SQL wrapper and paste in
your DMX. Test and validate the SQL containing the DMX, before copying to the
Clipboard.

The examples here use both stand-alone DMX and a SQL Server SSAS linked server.
If you want to experiment with the latter, you will need to set up an SSAS linked server
to SQL Server. You can do this from the GUI or from a SQL query. From the GUI,
expand your SQL Server in the SSMS Object Explorer. Expand Server Objects, right-
click on Linked Servers, and choose New Linked Server. Make sure the Provider is set
to Microsoft OL DB Provider for Analysis Services 10.0. From a SQL query, enter
code similar to the following (your may need to change the @datasrc and @catalog
properties to point to your SSAS server and database, respectively):

exec sp_addlinkedserver

@server='MySSAS',

@srvproduct='',

@provider='MSOLAP',

-- change server as necessary

@datasrc='localhost',

-- change database as necessary

@catalog='Adventure Works DW 2008'

The @server property can be anything reasonable—it is not the name of your
SSAS server (that is the @datasrc property). Here, @server is MySSAS. This is the
name by which you reference the linked server. There may be one step involved—you
must allow SSAS to run in-process with SQL Server. To check or set this, follow these
steps:

1. In the SSMS Object Explorer, expand your SQL Server, then Server Objects,
followed by Linked Servers and Providers.

2. Right-click on the MSOLAP provider and choose Properties. This opens the
Provider Options dialog shown in Figure C-1.

3. If necessary, turn on the Allow Inprocess check box, and click OK.

4 1 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Where to Use DMX Queries in PowerPivot
For stand-alone DMX, you go through From Analysis Services or PowerPivot by
clicking From Database in the Get External Data group of the PowerPivot Home
ribbon. The steps are identical to those for writing MDX queries, which is documented
in Appendix B. For DMX embedded within SQL, you begin by clicking From Database
in the Get External Data group of the PowerPivot Home ribbon. In the drop-down
menu, choose From SQL Server (neither From Access nor From Analysis Services

Figure C-1 Provider Options dialog

A p p e n d i x C : D M X Q u e r i e s f o r P o w e r P i v o t 4 1 7

nor PowerPivot is going to work). Connect to your SQL Server and any database (one
example requires the AdventureWorksDW2008 or the AdventureWorksDW database,
so you could connect appropriately if you are able to). The next dialog in the Table Import
Wizard is the Choose How to Import the Data dialog. This is shown in Figure C-2.

In this dialog you have to select the Write a Query That Will Specify the Data to
Import radio button. When you click Next, the Specify a SQL Query dialog appears.
The dialog is shown in Figure C-3.

Paste your code (copied from SSMS) into the SQL Statement box and then click
Validate, followed by Finish. Your data mining data is imported into a PowerPivot table.

Figure C-2 Choose How to Import the Data dialog

4 1 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

DMX Examples
If you want to try these examples, you will need SQL Server Analysis Services 2008 or
2008 R2, and the Adventure Works DW 2008 multidimensional database (available
from www.codeplex.com), which contains the data mining models used in the
following queries. You should also be able to adapt many of the queries to work with
SQL Server Analysis Services 2005 and the Adventure Works DW multidimensional
database (also available from www.codeplex.com). You will also need SQL Server itself,
if you opt for the linked server approach, in order to run the SQL that contains the
DMX. One of the examples references a SQL Server view (vTargetMail)—for that
example to work, whether as stand-alone or embedded DMX, you will need either the
AdventureWorksDW2008 or the AdventureWorksDW sample SQL Server database).

Figure C-3 Specify a SQL Query dialog

A p p e n d i x C : D M X Q u e r i e s f o r P o w e r P i v o t 4 1 9

All of the embedded examples use a linked server called MySSAS—this name was
defined in the SQL to add a linked server, shown immediately above.

You may discover that not all of your DMX works during a PowerPivot import.
There are a couple of provisos. One, if the DMX returns a nested table, this will fail if
the DMX is embedded within SQL—you have to flatten nested tables using the DMX
keyword Flattened. Two, for embedded DMX only, if your DMX contains single
quotes, you must add another single quote to each single quote. Here is the generic
SQL wrapper syntax for embedded DMX:

select * from openquery(MySSAS,'')

Here, the name of the linked server is MySSAS—this does not have to match your
actual SSAS server name. You paste your DMX (presumably, tested as a stand-alone
DMX query first) between the single quotes. For each example, the pure stand-alone
DMX is shown first, followed by the DMX inside the SQL. For all of the examples
(apart from the first one, which fails), there is a screenshot of the resulting data in a
PowerPivot table.

NOTE
It is quite possible that your data may be different—the results of DMX queries can be affected by which data
SSAS chose to train the mining models.

Cases Query: Nested Table Failure
Many DMX queries return nested tables. If the DMX is embedded within SQL, the
outer SQL query will fail.

DMX: Stand-Alone

select * from mining structure [customer mining].cases

DMX: Embedded in SQL

select * from openquery(MySSAS,'select * from

mining structure [customer mining].cases')

The second query will fail within a PowerPivot import, as the DMX returns a nested
table that the outer SQL doesn’t like. There are no results for the second example, so it
can’t be used to import into a PowerPivot table—it will not validate during the Table
Import Wizard.

4 2 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Cases Query: Flattened Table Success
In the two examples here, the nested table is flattened.

DMX: Stand-Alone

select flattened * from mining structure [customer mining].cases

DMX: Embedded in SQL

select * from openquery(MySSAS,'select flattened * from

mining structure [customer mining].cases')

This is similar to the previous query—except that, this time, both examples work!
Please note the introduction of the DMX keyword Flattened. This is a simple Cases
query. The resulting PowerPivot table is shown in Figure C-4.

Cases Query on Specific Columns
Instead of returning all columns, you can ask for specific columns.

DMX: Stand-Alone

select flattened [customer counts] as Customer, (select [Subcategory],

 [internet sales amount] as Sales from [subcategories])

from mining structure [customer mining].cases

Figure C-4 PowerPivot table

A p p e n d i x C : D M X Q u e r i e s f o r P o w e r P i v o t 4 2 1

DMX: Embedded in SQL
select * from openquery(MySSAS,'select flattened [customer counts]

as Customer, (select [Subcategory], [internet sales amount] as Sales

from [subcategories]) from mining structure [customer mining].cases')

This is a Cases query returning specific columns. The resulting PowerPivot table is
shown in Figure C-5.

Content Query with DMX Subquery
This example, like the last one, is DMX within DMX (a DMX subquery).

DMX: Stand-Alone
select flattened node_caption as [Cluster], node_description as

Demographics,(select [attribute_name], [attribute_value], [Support],

[Probability] * 100 as [Probability] from node_distribution)

from [TM Clustering].content where node_type = 5

DMX: Embedded in SQL
select * from openquery(MySSAS,'select flattened node_caption as [Cluster],

node_description as Demographics,(select [attribute_name],

[attribute_value], [Support], [Probability] * 100 as [Probability]

 from node_distribution) from [TM Clustering].content

where node_type = 5')

This is a Content query. The resulting PowerPivot table is shown in Figure C-6.

Figure C-5 PowerPivot table

4 2 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Content Query with Embedded Single Quotes
Single quotes within DMX queries require special treatment when the DMX is embedded
within SQL.

DMX: Stand-Alone
select flattened node_description as Demographics, (select [attribute_name],

[attribute_value], [Support], [Probability] * 100 as [Probability]

from node_distribution where [attribute_value] = '1')

from [TM Decision Tree].content

where node_type = 3 or node_type = 4

DMX: Embedded in SQL

select * from openquery(MySSAS,'select flattened node_description

as Demographics, (select [attribute_name], [attribute_value], [Support],

[Probability] * 100 as [Probability] from node_distribution

where [attribute_value] = ''1'') from [TM Decision Tree].content

where node_type = 3 or node_type = 4')

This is another Content query—note that embedded single quotes have been
doubled-up with an extra single quote in the second example. The resulting PowerPivot
table is shown in Figure C-7.

Figure C-6 PowerPivot table

A p p e n d i x C : D M X Q u e r i e s f o r P o w e r P i v o t 4 2 3

Prediction Query with Embedded Single Quotes
This one needs a SQL Server view, vTargetMail, which is part of the
AdventureWorksDW2008 or the AdventureWorksDW database.

DMX: Stand-Alone
select TM.* , Predict([Bike Buyer]) as [Bike Buyer],

vba!format(PredictProbability([Bike Buyer]),'Percent') as [Probability]

from [TM Decision Tree] prediction join openquery ([Adventure Works DW],

'select Age, Gender, Region, NumberCarsOwned from vTargetMail') as TM

on [TM Decision Tree].[Age] = TM.[Age] and [TM Decision Tree].[Gender] =

TM.[Gender] and [TM Decision Tree].[Region] = TM.[Region]

and [TM Decision Tree].[Number Cars Owned] = TM.[NumberCarsOwned]

DMX: Embedded in SQL
select * from openquery(MySSAS,'select TM.* , Predict([Bike Buyer]) as

[Bike Buyer], vba!format(PredictProbability([Bike Buyer]),''Percent'') as

[Probability] from [TM Decision Tree] prediction join

openquery([Adventure Works DW],''select Age, Gender, Region,

NumberCarsOwned from vTargetMail'') as TM

on [TM Decision Tree].[Age] = TM.[Age] and [TM Decision Tree].[Gender] =

TM.[Gender] and [TM Decision Tree].[Region] = TM.[Region]

and [TM Decision Tree].[Number Cars Owned] = TM.[NumberCarsOwned]')

Figure C-7 PowerPivot table

4 2 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

This is a Prediction query from a decision tree model. The single quotes have been
doubled up in the second example. The reference Adventure Works DW is to a SQL
Server data source within the SSAS database. The code is getting quite complex,
especially in the second example. The SQL has a reference to an SSAS linked server,
which, in turn, has a reference to a SQL Server database! The resulting PowerPivot
table is shown in Figure C-8.

Prediction Forecast Query with Embedded Single Quotes
These two examples show how to forecast quantity sold in the future.

DMX: Stand-Alone
select flattened [Model Region], (select $Time as [Year Month], Quantity

from PredictTimeSeries([Quantity],3)) as [Future] from [Forecasting]

where [Model Region] = 'T1000 North America'

or [Model Region] = 'T1000 Europe'

DMX: Embedded in SQL
select * from openquery(MySSAS,'select flattened [Model Region],

(select $Time as [Year Month], Quantity

from PredictTimeSeries([Quantity],3))

as [Future] from [Forecasting]

where [Model Region] = ''T1000 North America''

or [Model Region] = ''T1000 Europe''')

Figure C-8 PowerPivot table

A p p e n d i x C : D M X Q u e r i e s f o r P o w e r P i v o t 4 2 5

This is a Prediction query on a time series model. Please note the doubling of single
quotes in the embedded example. The resulting PowerPivot table is shown in Figure C-9.

SQL Used to Format and Manipulate the DMX Result Set
The second example demonstrates the benefit of embedding DMX within SQL.

DMX: Stand-Alone
select flattened node_description , (select [attribute_value],

[probability] * 100,[support] from node_distribution)

from [TM Decision Tree].content

DMX: Embedded in SQL
select node_description as Demographics,

left([expression.expression],5) +

'%' as Probability,[expression.support] as Support from

openquery(MySSAS,'select flattened node_description ,

(select [attribute_value],[probability] * 100,[support]

from node_distribution) from [TM Decision Tree].content') where

[expression.support] > 100 and [expression.attribute_value]=

CONVERT(nvarchar(10),1) order by [expression.expression] desc

The second example includes rather more in the SQL wrapper. The SQL has been
used to further manipulate the DMX result set. The resulting PowerPivot table is
shown in Figure C-10.

Figure C-9 PowerPivot table

4 2 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

Hopefully, this short appendix is enough to get you started in importing data mining
data into PowerPivot. Two methods have been demonstrated: first, DMX queries as
stand-alone queries that you write as MDX statements, and second, DMX queries as
embedded queries that you write as SQL statements. There is a third alternative. This
involves using the data mining add-in in Excel (Table Tools/Analyze ribbon) and
importing, or linking, the resulting Excel worksheet data into PowerPivot.

Figure C-10 PowerPivot table

427

Index

+ (addition operator), 116
& (ampersand), 116, 303
* (asterisk), 404
/ (division operator), 116
&& (double ampersand), 116, 213
|| (double pipe symbol), 116, 213–214
^ (exponentiation operator), 116
- (hyphen), 304
* (multiplication operator), 116
‘ (quote mark), 422–425
– (subtraction operator), 116

A
.abf extension, 381
ABS() function, 320–321
.accdb extension, 25, 31, 32
Access databases

connecting to, 32
importing from, 31–33, 73–74
versions, 73

Actions Group options, 168
Add button, 93
addition operator (+), 116
Additional Actions option, 157
Adventure Works database, 26, 81, 99,

402–412, 418
A-functions, 228, 230
age, calculating, 381
aggregate functions, 228–241
aggregations, 80–81, 148
ALL() function, 192–201
ALLEXCEPT() function, 201–203
ALLNOBLANKROW() function, 203–204
ampersand (&), 116, 303
Analysis Group options, 186
AND() function, 205
AND operator, 116

Apply Currency Format button, 92
Apply Percentage Format button, 92
arithmetic operators, 116
asterisk (*), 404
attribute hierarchies, 408, 409
AVERAGE() function, 228–229
AVERAGEA() function, 230
averages, moving, 367–368
AVERAGEX() function, 229
averaging data, 228–230
axes, pivot charts, 179, 182–183, 185
Axes button, 185
Axes Group options, 185
Axis button, 185
Axis Fields drop-zone, 178, 179
Axis Options page, 183

B
Background Group options, 185
Banded Columns option, 172
Banded Rows option, 172
Basis parameter, 259
BI (business intelligence)

adding via DAX, 46–50
creating “instant BI,” 5–18
described, 20
value display options, 159–165

BI reports, 56–57
BI solutions

changes over time, 367
classic, 362–370
customizing measures for rows/

columns, 365–366
moving average, 367–368
percentage of all, 362–363, 364
percentage of column, 363–364
percentage of parent, 365

percentage of row total, 363
running totals, 368–370

BIDS (Business Intelligence Development
Studio), 75–76, 352–354

binary large objects (BLOBs), 39
BLANK() function, 117, 118, 205–206
blank lines, 172
Blank Rows button, 172
blank values

ALLNOBLANKROW() function,
203–204

BLANK() function, 117, 118,
205–206

COUNTBLANK() function, 234
counting in columns, 234
FIRSTNONBLANK() function,

278–279
ISBLANK() function, 117–118,

192, 206, 215–216
LASTNONBLANK() function,

281–282, 359
overview, 117–118
returning, 205–206
vs. null values, 206

BLOBs (binary large objects), 39
bucket values, 391
business intelligence. See BI
Business Intelligence Development Studio

(BIDS), 75–76, 352–354
buttons, removing from pivot charts, 187

C
CALCULATE() function

ALL() function and, 192–195
FILTER() function and, 112,

123–134, 206–207
overview, 206–207
uses for, 123–134

4 2 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

calculated columns, 109–112
considerations, 51–52
context of, 109–110
creating, 11–12, 109
described, 95
evaluation of, 110
examples of, 111–112
materialization of, 110
naming conventions, 144
performing operations, 95
referring to, 111
using in pivot tables, 12, 110–111
vs. calculated measures, 51, 145
vs. regular columns, 144

calculated measure context menu, 145
calculated measures

considerations, 16, 51–52
context and, 143–145
creating, 51–54, 78
in MDX, 410
vs. calculated columns, 51, 145
vs. regular columns, 145

Calculated Member Builder dialog, 78, 79
CALCULATETABLE() function, 208
Calculations group, 95
Calculations Group options, 168–169
Calculations Option button, 95
captions, 152, 169, 185
CategoryID column, 38–39
CEILING() function, 321
cells

blank, 167
DAX functions and, 309
deleting, 168
displaying zeros in, 167
empty, 167
formatting, 158, 159
measures and, 15–16

Change Chart Type button, 184
Change Chart Type dialog, 184
character large objects (CLOBs), 39
Chart Layouts button, 185
Chart Layouts Group options, 185
Chart Styles button, 185
Chart Styles Group options, 185
charts. See pivot charts
Charts Group options, 187
Clear All option, 168
Clear button, 168, 186

Clear Filter option, 57, 154–155
Clipboard group, 24, 67–68
CLOBs (character large objects), 39
CLOSINGBALANCEMONTH() function,

264–265
CLOSINGBALANCEYEAR() function, 266–267
column context menu, 144–145
Column Labels/Row Labels menu, 152–156
Column Width button, 93
columns. See also data; rows

adding, 46–50
averaging values in, 228–229
banded, 172
calculated. See calculated columns
checking for numeric data, 219
counting blank values in, 234
customizing measures for, 365–366
deleting, 39–40, 93–94, 95
grand totals, 167, 171, 172, 173
headings, 46, 48, 65
hiding/unhiding, 93–95
labels, 152–156, 167, 169
naming conventions, 144
percentage of, 363–364
in pivot charts, 186
querying on specific, 420–421
regular vs. calculated, 144
selecting, 390
subtotals, 170–171
width, 93

Columns group, 93–95
comparison operators, 116
composite primary keys, 40
CONCATENATE() function, 116, 253,

302–304
concatenation, 116
concatenation operators, 116
conditional formatting, 174–177
Conditional Formatting button, 174–177
connections

adding tables/queries to, 96–97
considerations, 51
displaying, 96
existing, 96–97
new, 96
OLEDB/ODBC, 87, 97
single vs. multiple, 97
viewing, 50–51

Connections group, 96–97

Contoso databases, 26
COUNT() function, 231
COUNTA() function, 232–233
COUNTAX() function, 233
COUNTBLANK() function, 234
COUNTROWS() function, 210, 234–235
COUNTX() function, 231–232
Create Linked Table button, 64–65
crossjoins, 404–407
.crtx extension, 184
cube data, PowerPivot, 380–381
CUBE() functions, 50, 377–379
cubes, SSAS, 50, 74, 80–82, 91, 400
Currency data type, 41, 81, 91
currency formats, 91–92, 307–308
currency symbols, 55, 92, 308
Current Selection Group options, 185

D
data. See also information; rows

aggregating, 228–241
averaging, 228–230
buckets of, 391
copying/pasting, 67–68
counting blank values, 234
counting values, 231–234
denormalizing, 12, 46, 221–222,

379, 394
external, 68–90
filtering. See filter functions; filters
formatting, 91–92
grouping, 395
importing. See importing
minimum/maximum values,

235–239
multidimensional, 74–75, 81
previewing, 30–31
relational, 74–75
sorting. See sorting items
static, 109–110
summing, 239–241, 341–342

Data Analysis eXpressions. See DAX
data area, 156–165
data area context menu, 156–165
Data Bars menu, 175, 176
.data extension, 381
data feeds, 25, 35, 37, 84–85
Data Group options, 185, 186

In d e x 4 2 9

data mining, 380
Data Mining eXtensions. See DMX
data mining models, 82–83, 380, 414, 418
data sets, 38
data sources, 68–83
Data Type button, 91
data types

changing, 40–41, 42
considerations, 42, 117
overview, 117
resetting, 81
setting, 91

databases
Access, 31–33, 73–74
Adventure Works, 26, 81, 99,

402–412, 418
Contoso, 26
as data source, 68–83
multidimensional, 117, 400,

402, 418
names, 7, 26, 27, 87, 397
Northwind. See Northwind database
relational, 27, 43, 45
SSAS, 95, 99, 381, 414, 424

date data type, 91, 244, 265
date dimension, 263
DATE() function, 244–245
date tables, 350–354
DATEADD() function, 267–269, 367
dates. See also date/time functions

challenges, 348–358
considerations, 348
converting numbers to, 244–245
converting text to, 245–246
parsing, 349–350
ranges, 269–271, 277–282
returning up to current date,

271–274
sorting on, 354–358

DATESBETWEEN() function, 269–270
DATESINPERIOD() function, 270–271
DATESMTD() function, 271–272
DATESYTD() function, 274
date/time display, 244
date/time functions, 243–299. See also

time intelligence functions
advanced functions, 261–299
basic functions, 243–260
calculating year fraction, 259–260

changes over time, 360, 367
closing balance functions, 264–267
CLOSINGBALANCEMONTH()

function, 264–265
CLOSINGBALANCEQUARTER()

function, 265–266
CLOSINGBALANCEYEAR() function,

266–267
converting numbers to dates,

244–245
converting numbers to times,

254–255
converting text to dates, 245–246
date columns/strings, 253–254
DATE() function, 244–245
DATEADD() function, 267–269, 367
DATESBETWEEN() function,

269–270
DATESINPERIOD() function,

270–271
DATESMTD() function, 271–272
DATESQTD() function, 272–273
DATESYTD() function, 274
DATEVALUE() function, 245–246
DAY() function, 246–247
determining day of week, 256–257
determining week number,

257–258
EDATE() function, 247
ENDOFMONTH() function, 275
ENDOFQUARTER() function,

275–276
ENDOFYEAR() function, 276–277
EOMONTH() function, 247–248
establishing date ranges, 269–271,

277–282
extracting quarter from date,

252–253
FIRSTDATE() function, 277–278
FIRSTNONBLANK() function,

278–279
HOUR() function, 248–249
LASTDATE() function, 279–281
LASTNONBLANK() function,

281–282, 359
MINUTE() function, 249–250
MONTH() function, 250–251
moving backward/forward,

267–269, 288–289, 293–294

NEXTDAY() function, 282–283
NEXTMONTH() function, 283–284
NEXTQUARTER() function, 284
NEXTYEAR() function, 285
NOW() function, 251–252
OPENINGBALANCEMONTH()

function, 285–286
OPENINGBALANCEQUARTER()

function, 286–287
OPENINGBALANCEYEAR() function,

287–288
overview, 244
PARALLELPERIOD() function,

288–289, 367
PREVIOUSDAY() function, 289–290
PREVIOUSMONTH() function,

290–291
PREVIOUSQUARTER() function,

291–292
PREVIOUSYEAR() function, 291–292
QUARTER() function, 252–253
regional settings, 244
returning current date, 256
returning current date/time,

251–252
returning day of the month,

246–247
returning future/past dates,

247–248
returning hours/minutes, 248–250
returning month from date,

250–251
returning month-end dates,

247–248
returning year from date, 258–259
SAMEPERIODLASTYEAR() function,

293–294
SECOND() function, 253–254
separate date tables, 350–354
sorting on dates, 354–358
STARTOFMONTH() function,

294–295
STARTOFQUARTER() function, 295
STARTOFYEAR() function, 295–296
TIME() function, 254–255
TIMEVALUE() function, 255
TODAY() function, 256
TOTALMTD() function, 296–297
TOTALQTD() function, 297–298

4 3 0 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

date/time functions (cont.)
TOTALYTD() function, 298–299
WEEKDAY() function, 256–257
WEEKNUM() function, 257–258
YEAR() function, 258–259
YEARFRAC() function, 259–260

DATEVALUE() function, 245–246
DAX (Data Analysis eXpressions), 108–109
DAX formulas. See also functions

adding business intelligence via,
46–50

applying, 115
calculating ages, 381
changes over time, 360, 367
considerations, 16
how to write, 114–118
measures. See measures
moving average, 367–368
parsing dates, 349–350
percentage of all, 362–363, 364
percentage of column/row,

363–364
percentage of parent, 365
real-world solutions, 347–381
relationships and, 43
running totals, 368–370
sorting on dates, 354–358
uses for, 109–114

DAX measures. See measures
DAX/PowerPivot solutions, 347–381
DAY() function, 246–247
Decimal Number data type, 91
decimals, removing from numbers,

343–344
Decrease Decimal button, 92
Delete button, 93, 168
Delete Cells option, 168
denormalization, 12, 46, 221–222, 379, 394
Design ribbon, 93–104
dimensions, 16, 75, 76, 118, 402
Display tab, 167, 169
DISTINCT() function, 209–210
division operator (/), 116
DMX (Data Mining eXtensions), 82–83,

414–415
DMX queries, 82–83, 380, 413–426
double ampersand (&&), 116, 213
double pipe symbol (||), 116, 213–214
drop-zone entry context menus, 145–148
drop-zones, 110–114, 144, 145–148

E
EARLIER() function, 210–211
EARLIEST() function, 211–212
EDATE() function, 247
Edit group, 103–104
ENDOFMONTH() function, 275
ENDOFQUARTER() function, 275–276
ENDOFYEAR() function, 276–277
EOMONTH() function, 247–248
error values, 167
errors

IFERROR() function, 215
ISERROR() function, 216–217
linked tables, 65–66
returning information about, 215
testing for error condition, 216–217

ETL (Extract, Transform, and Load)
operations, 24

EXACT() function, 304–305
Excel

creating separate time
dimension, 351

CUBE() functions, 377–379
GETPIVOTDATA() function, 376–377
importing from, 34–37
publishing to SharePoint, 380
saving to SharePoint, 380
SQL queries for, 396–397

Excel Data group, 64–66
Excel formula bar, 173
Excel pivot tables, 20, 81
Excel PowerPivot ribbon, 20, 21, 63–67
Excel Table button, 105
Excel tables

converting to PowerPivot tables,
64–65

links to, 24
vs. PowerPivot tables, 36

Excel workbooks
considerations, 21–22
described, 6, 8
Excel Data group, 64–65
Northwind database, 34–35
SQL queries and, 397

Excel worksheets, 4, 5, 20, 63, 89, 396
Existing Connections button, 96–97
EXP() function, 322
explicit measures, 51–52
exponentiation operator (^), 116

exponents, 322
Extract, Transform, and Load (ETL)

operations, 24

F
FACT() function, 322–323
factorial, 322–323
facts, 16, 51. See also measures
FALSE() function, 212–213
FALSE logical operator, 116
false/true conditions

AND() function, 205
changing to/from, 220–221
FALSE() function, 212–213
IF() function, 214
ISBLANK() function, 215–216
ISERROR() function, 216–217
ISLOGICAL() function, 217–218
ISNONTEXT() function, 218
ISTEXT() function, 219–220
NOT() function, 220–221
OR() function, 221
TRUE() function, 223–224

Field Buttons button, 187
Field Headers button, 167, 169, 174
Field List button, 66, 141, 169, 187
field lists. See PowerPivot Field List
Fields, Items, & Sets button, 168
files

backup, 381
connection, 96
flat, 85, 86
text, 24, 85–87, 89, 96

filter context, 112
FILTER() function, 213–214
filter functions, 192–204

ALL() function, 192–201
ALLEXCEPT() function, 201–203
ALLNOBLANKROW() function,

203–204
CALCULATE() function, 112,

123–134, 206–207
CALCULATETABLE() function, 208
DISTINCT() function, 209–210
EARLIER() function, 210–211
EARLIEST() function, 211–212
FILTER() function, 213–214
RELATED() function, 97, 118–123,

221–222

In d e x 4 3 1

RELATEDTABLE() function, 97, 123,
222–223, 343

VALUES() function, 224–226
filters. See also sorting items

applying, 92
clearing, 57, 92, 154–155, 186
considerations, 57
described, 29–30
grand totals, 171, 172, 173
labels, 152–156
in MDX, 410
measures, 192–201
overriding filter context, 193–194,

203, 210
pivot charts, 58, 186
predefined, 370–371
reports, 56–57, 151–152
subtotals, 171–172
Top 10, 155, 157
value, 154–156
via SQL, 392
wildcards for, 393

FIND() function, 305–306
finding items

case sensitivity and, 305, 306, 314
FIND() function, 305–306
in PowerPivot Field List, 141, 143
SEARCH() function, 314
text/strings, 305–306

First Key Sort Order option, 154
FIRSTDATE() function, 277–278
FIRSTNONBLANK() function, 278–279
FIXED() function, 306–307
flat files, 85, 86
FLOOR() function, 323–324
For Empty Cells Show option, 167
For Error Values Show option, 167
forecasts, 424–425
foreign keys, 40, 45
Format As Table button, 174
Format Axis dialog, 182
Format button, 91–92
Format Cells dialog, 158, 159
Format Cells option, 158
FORMAT() function, 307–308
Format Selection button, 185
formatting. See also styles

cells, 158, 159
conditional, 174–177

data, 91–92
numbers, 158, 159
pivot tables, 170–177
text, 307–308

Formatting group, 91–92
formulas, DAX. See DAX formulas
Freeze button, 93
From Data Feeds button, 84–85
From Database button, 68–83
From Other Sources button, 87–89
From Report button, 83–84
From Text button, 85–87
full-additive numbers, 359
function button, 115
functions

A-functions, 228, 230
aggregate, 228–241
date/time. See date/time functions
filter. See filter functions
information. See information

functions
logical. See logical functions
mathematical. See Math & Trig

functions
statistical, 228–239
text. See text functions
time intelligence. See time

intelligence functions
X-functions, 123, 228, 229, 230, 342

G
Get External Data group, 24, 68–90
GETPIVOTDATA() function, 376–377
Go to Excel Table button, 105
grand totals, 167, 171, 172, 173
Grand Totals button, 171, 172, 173
gridlines, 173, 182, 185
grouping data, 395

H
headings

columns, 46, 48, 65
pivot tables, 173
suppressing in worksheets, 173

Hide button, 93
hierarchies, 408–409

Home ribbon, 67–93
Clipboard group, 67–68
considerations, 67
described, 67
Formatting group, 91–92
formatting pivot tables, 174–177
Get External Data group, 68–90
illustrated, 21, 67
Reports group, 90
showing/hiding, 20
Sort and Filter group, 92
View group, 93

HOUR() function, 248–249
hyphen (-), 304

I
IF() function, 214
IFERROR() function, 215
importing

from Access, 31–33, 73–74
from data feeds, 37, 84–85
from Excel, 34–37
from Northwind databases, 7–10,

29–31
from other sources, 87–89
from PowerPivot, 82–83
from reports, 83–84
from SQL Server, 26–31, 68–73
from SSAS, 74–81
from text, 85–87

Importing dialog box, 30–31
Increase Decimal button, 92
infinity, 215
information. See BI; data
information functions

ISBLANK() function, 117–118, 192,
206, 215–216

ISERROR() function, 216–217
ISLOGICAL() function, 217–218
ISNNUMBER() function, 219
ISNONTEXT() function, 218
ISTEXT() function, 219–220

inheritance, 43, 45
Insert Chart dialog, 180, 181, 184
Insert Function dialog, 115
Insert ribbon, 187
INT() function, 324–325, 344
integrity, referential, 29, 204, 226
Internet data feeds. See data feeds

4 3 2 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

ISBLANK() function, 117–118, 192, 206,
215–216

ISERROR() function, 216–217
ISLOGICAL() function, 217–218
ISNNUMBER() function, 219
ISNONTEXT() function, 218
ISO.CEILING() function, 325–326
ISTEXT() function, 219–220

J
joins

crossjoins, 404–407
self-joins, 379, 394–395

K
key performance indicators. See KPIs
keys

foreign, 40, 45
lookup, 45
primary, 39, 40, 45

KPI queries, 411–412
KPIs (key performance indicators), 411–412

L
Label Filters menu, 154–156
labels

columns, 152–156, 167, 169
filtering, 152–156
pivot charts, 180, 185
rows, 152–156, 167, 169

Labels Group options, 185
LASTDATE() function, 279–281
LASTNONBLANK() function, 281–282, 359
Launch group, 63
Layout & Format tab, 167
Layout Group options, 170–172
layouts

pivot charts, 185
pivot tables, 173–174
reports, 172, 173

LEFT() function, 309
Legend Fields drop-zone, 178, 179
legends, pivot charts, 178–179, 182,

185, 186
LEN() function, 309–310
linked charts, 169, 178, 180–184, 186
linked servers, 396–397, 415, 418–419
Linked Table ribbon, 104–105

linked tables
Create Linked Table button, 64–66
errors, 65–66
linking charts to tables, 169, 178,

180–184, 186
updating, 105
working with, 103–105

Linked Tables button, 104
Linked Tables group, 105
lists, 35–36. See also PowerPivot Field List
LN() function, 326–327
LOG() function, 327–328
LOG10() function, 328–329
Logarithmic scale option, 183
logarithms, 183, 184, 326–329
logical functions

AND() function, 205
conditions. See true/false conditions
FALSE() function, 212–213
IF() function, 214
IFERROR() function, 215
NOT() function, 220–221
OR() function, 221
TRUE() function, 223–224

logical operators, 116
lookup keys, 45. See also primary keys
LOWER() function, 310–311

M
Math & Trig functions, 319–344. See also

numbers
ABS() function, 320–321
CEILING() function, 321
converting negative numbers to

positive, 320–321
described, 320
EXP() function, 322
exponents, 322
FACT() function, 322–323
factorial, 322–323
FLOOR() function, 323–324
INT() function, 324–325, 344
ISO.CEILING() function, 325–326
LN() function, 326–327
LOG() function, 327–328
LOG10() function, 328–329
logarithms, 183, 184, 326–329
MOD() function, 329–330
modulo function, 329–330

MROUND() function, 330–331
PI() function, 331–332
positive/negative numbers,

339–340
POWER() function, 332–333
QUOTIENT() function, 333–334
RAND() function, 334–335
RANDBETWEEN() function, 335–336
random numbers, 334–336
ROUND() function, 336–337
ROUNDDOWN() function, 337–338
rounding numbers. See rounding

functions
ROUNDUP() function, 338–339
SIGN() function, 339–340
SQRT() function, 340–341
square root, 340–341
stripping decimals, 343–344
SUM() function, 117, 239–240,

341–342
summing data, 239–241, 341–342
SUMX() function, 342–343
TRUNC() function, 325, 343–344

MAX() function, 235–236
MAXA() function, 236–237
MAXX() function, 236
.mdb extension, 25, 31, 32
MDX (MultiDimensional eXpressions)

calculated measures in, 78–80, 410
CUBE() functions, 50, 378–379
filters in, 410
predefined sets, 370–376
support for, 82–83

MDX queries, 80, 82–83, 399–412
Measure settings dialog, 52, 115, 147–148
measures

calculated. See calculated measures
considerations, 113
context of, 112
creating, 16–17, 63, 112, 115
customizing for rows/columns,

365–366
defaulting to selected tables,

143, 144
deleting, 63
described, 16, 51, 113
drop-zones and, 145–146
dynamic, 112
evaluation of, 113
examples of, 113–114

In d e x 4 3 3

explicit, 51–52, 145
filtering, 192–201
moving average, 367–368
non-materialization of, 113
percentage of all, 362–363, 364
percentage of column, 363–364
percentage of parent, 365
percentage of row total, 363
referring to, 113
settings, 52, 63, 115, 147–148
sorting, 158, 159
using in pivot tables, 113

Measures group, 63
message area, 141
messages, 141–142
metrics, 51
Microsoft SQL Server. See SQL Server
MID() function, 311
MIN() function, 237–238
MINA() function, 238–239
MINUTE() function, 249–250
MINX() function, 238
MOD() function, 329–330
modulo function, 329–330
MONTH() function, 250–251
More Formats button, 92
More Options button, 154, 251
More Sort Options dialog, 152, 154, 251
moving averages, 367–368
MROUND() function, 330–331
multidimensional data, 74–75, 81
multidimensional databases, 117, 400,

402, 418
MultiDimensional eXpressions. See MDX
multiplication operator (*), 116

N
Nancy’s age, calculating, 381
New Formatting Rule dialog, 175–177
New Set dialog, 168–169
NEXTDAY() function, 282–283
NEXTMONTH() function, 283–284
NEXTQUARTER() function, 284
NEXTYEAR() function, 285
Northwind database

Access vs. pre-Access, 4
alternatives to, 4
considerations, 25, 26

data feed, 25, 35
importing tables from, 7–10, 29–31

Northwind Excel workbook, 34–35
NOT() function, 220–221
NOW() function, 251–252
null values, 117–118, 206, 304
Number Format option, 158, 159
numbers. See also Math & Trig functions

age calculations, 381
alignment, 306–307
changes over time, 360, 367
checking columns for numeric

data, 219
converting negative to positive,

320–321
converting text to, 317
converting to dates, 244–245
converting to times, 254–255
customizing measures for rows/

columns, 365–366
decimal places, 306–307
exponents, 322
factorial of, 322–323
formatting, 158, 159
full-additive, 359
hiding totals, 359–360
logarithms, 183, 184, 326–329
modulo function, 329–330
moving average, 367–368
negative, 339–340
non-additive, 359
not adding up, 359–362
percentage of all, 362–363, 364
percentage of column, 363–364
percentage of parent, 365
percentage of row total, 363
positive, 339–340
power, 332–333
quotient, 333–334
random, 334–336
removing decimals from, 343–344
rounding up/down. See rounding

functions
running totals, 164, 165, 368–370
semi-additive, 359
square root of, 340–341
totals/subtotals, 164, 165, 359,

368–370

O
OLAP Tools, 166
OLEDB/ODBC connections, 87, 97
OPENINGBALANCEMONTH() function,

285–286
OPENINGBALANCEQUARTER() function,

286–287
OPENINGBALANCEYEAR() function,

287–288
operator precedence, 116
operators, 116
Options group, 66
OR() function, 221
OR operator, 116

P
Page Layout ribbon, 173
PARALLELPERIOD() function, 288–289, 367
parsing dates, 349–350
percentage of all, 362–363, 364
percentage of column/row, 363–364
percentage of parent, 365
pi, 331–332
PI() function, 331–332
pivot charts, 178–187

appearance of, 185, 186–187
axes, 179, 182–183, 185
backgrounds, 186
based on existing pivot table,

180–184
changing chart type, 184, 187
color, 185
columns in, 182, 186
considerations, 178
creating, 178, 180–184
creating quick chart, 57–60
deleting, 182, 183, 186
described, 136
filters, 58, 186
fonts in, 186
format options, 182
gridlines, 182
inserting, 180, 181
inserting into Excel worksheets, 63
labels, 180, 185
layouts, 185
legends, 178–179, 182, 185, 186

4 3 4 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

pivot charts (cont.)
linking to pivot tables, 169, 178,

180–184, 186
menus, 179–187
methods for adding, 57–60
multiple, 178
plot area, 182, 185
PowerPivot Field List, 178–179
removing buttons from, 187
ribbons, 179–187
rotating, 185
selecting, 182
selecting data source, 182
series, 178, 179
slicers for, 179
styles, 185
switching rows/columns in, 185
templates, 184
trend lines, 186
uses for, 136

pivot reports, 50, 90, 136–137. See also
reports

pivot table menu, 137, 138
pivot tables, 137–177. See also tables

appearance of, 165–173
calculated columns in, 12, 110–111
cells. See cells
clearing, 168
conditional formatting, 174–177
converting Excel tables to, 64–65
copying/pasting data, 67–68
creating, 12–16, 64, 67, 137–139
creating quick table, 50–57
CUBE() functions, 377–379
data sources for, 68–90
date tables, 350–354
dates in. See date/time functions
described, 136
Excel pivot tables, 20, 81
expanding/collapsing, 14, 143–144
extracting data from, 376–377
filtering. See filters
flattened, 137, 139
formatting, 170–177
gridlines, 173, 185
headings, 173
inserting into Excel worksheets, 63
inserting stand-alone table, 137–139
linking. See linked tables

menus, 151–165
normal, 137, 138
page layouts, 173–174
populating, 55–56
PowerPivot Field List, 140–148
removing, 168
ribbons, 151, 165–177
saving, 14
selecting, 168
sharing, 173
slicers for, 149–150
styles, 170–177
tools/options, 165–170
uses for, 136
vs. Excel tables, 36
working without, 376–379

PivotChart button, 169, 180
PivotChart Tools/Analyze ribbon, 186–187
PivotChart Tools/Design ribbon, 184–185
PivotChart Tools/Format ribbon, 186
PivotChart Tools/Layout ribbon, 185–186
“pivoting,” 182, 185
PivotTable button, 63, 90, 136, 137, 178
PivotTable Group options, 167–168
PivotTable menu, 63–64
PivotTable Options dialog, 167–169
PivotTable Style Options group, 172
PivotTable Styles group, 173
PivotTable Tools/Design ribbon, 170–173
PivotTable Tools/Options ribbon, 165–170
POWER() function, 332–333
PowerPivot

importing from, 82–83
launching, 63
obtaining, 5, 21
overview, 19–60
real-world solutions, 347–381
settings, 66
starting, 20–25
undo/redo functions, 103
versions, 66
working without pivot tables,

376–379
PowerPivot Field List

described, 51
duplicate, 169
finding items in, 141, 143
for pivot charts, 178–179
for pivot tables, 140–148

removing all entries from, 168
toggling on/off, 66

PowerPivot for SharePoint, 5–6, 82,
380, 400. See also SharePoint

PowerPivot ribbon. See ribbons
PowerPivot tables. See pivot tables
PowerPivot web site, 21
PowerPivot window, 21–24, 37–42
PowerPivot/DAX solutions, 347–381
PREVIOUSDAY() function, 289–290
PREVIOUSMONTH() function, 290–291
PREVIOUSQUARTER() function, 291–292
PREVIOUSYEAR() function, 291–292
primary keys, 39, 40, 45
Properties group, 101–103

Q
QUARTER() function, 252–253
queries

DMX, 82–83, 380, 413–426
KPI, 411–412
MDX, 80, 82–83, 399–412
on specific columns, 420–421
SQL, 385–397

quote mark (‘), 422–425
quotient, 333–334
QUOTIENT() function, 333–334

R
ragged hierarchy, 214
RAND() function, 334–335
RANDBETWEEN() function, 335–336
random numbers, 334–336
recursion levels, 211
Redo button, 103
referential integrity, 29, 204
referential integrity violations, 204
Refresh button, 89–90
RELATED() function, 97, 118–123, 221–222
RELATEDTABLE() function, 97, 123,

222–223, 343
relational data, 74–75
relational databases, 27, 43, 45
Relationship group, 67
relationships

automatic detection of, 67
checking for, 43–46
considerations, 43, 98

In d e x 4 3 5

creating, 45, 97, 98, 100
creating from different sources,

98–101
deleting, 119
“forcing,” 120–121
inherited, 43
managing, 43–44, 97–101, 119
missing, 120
one-to-many, 98
problems with, 141, 142
RELATED() function, 97, 118–123,

221–222
RELATEDTABLE() function, 97, 123,

222–223, 343
Relationships group, 97–101
REPLACE() function, 312
Report Filter menu, 151–152
Report group, 63–64
reports

business intelligence, 46–50
filtering, 56–57, 151–152
importing from, 83–84
layouts, 172, 173
pivot, 50, 90, 136–137
SSRS, 83–84, 380

Reports group, 90
REPT() function, 312–313
Reset to Match Style button, 185
ribbons

Design ribbon, 93–104
Home ribbon. See Home ribbon
Insert ribbon, 187
Linked Table ribbon, 104–105
Page Layout ribbon, 173
pivot charts, 179–187
pivot tables, 151, 165–177
PivotChart Tools/Analyze ribbon,

186–187
PivotChart Tools/Design ribbon,

184–185
PivotChart Tools/Format ribbon, 186
PivotChart Tools/Layout ribbon,

185–186
PivotTable Tools/Design ribbon,

170–173
PivotTable Tools/Options ribbon,

165–170
PowerPivot ribbon in Excel, 20, 21,

63–67
View ribbon, 173

RIGHT() function, 117, 313–314
ROUND() function, 260, 336–337
ROUNDDOWN() function, 337–338
rounding functions

multiple units with MROUND(),
330–331

rounding down to integer with
INT(), 324–325

rounding down with FLOOR(),
323–324

rounding down with
ROUNDDOWN(), 337–338

rounding up with ISO.CEILING(),
325–326

rounding up with ROUNDUP(),
338–339

rounding up/down with
CEILING(), 321

rounding up/down with ROUND(),
336–337

ROUNDUP() function, 338–339
row context, 109–110
Row Labels menu, 152–156
rows. See also columns; data

banded, 172
blank, 172
counting, 230, 231, 234–235
customizing measures for, 365–366
grand totals, 167, 171, 172, 173
labels, 152–156, 167, 169
maximum number of, 38
percentage of row total, 363
subtotals, 170–171

RSS feeds, 84
running totals

breaking, 368, 369
displaying, 164, 165
non-breaking, 368–370
viewing, 164, 165

S
SAMEPERIODLASTYEAR() function, 293–294
schema names, 28, 74, 397
schemas, star, 12, 16, 50
SEARCH() function, 314
searches. See finding items
SECOND() function, 253–254
Select button, 168
Select Data button, 185

Select Data Source dialog, 182
self-joins, 379, 394–395
semi-additive numbers, 359
servers

linked, 396–397, 415, 418–419
names, 7, 26
SharePoint Server, 82, 380
SQL. See SQL Server
SSAS, 75, 99, 415–416, 419
unavailable, 26

SetFilter parameter, 201, 264, 265
sets

creating, 168–169
described, 168
predefined, 370–376

Shape Styles button, 186
Shape Styles Group options, 186
SharePoint

considerations, 5–6, 82–84, 380
enabling Excel Services in, 25
importing data and, 82
PowerPivot for SharePoint, 5–6, 82,

380, 400
publishing from Excel to, 380
saving to, 173, 380
sharing pivot tables/reports via,

173, 348
viewing pivot reports in, 25

SharePoint integrated mode, 82, 83–84
SharePoint Server, 82, 380
Sheet Options group, 173
Show group, 173
Show Group options, 169
Show Values As option, 159–165
Show/Hide group, 20, 51, 66, 140, 187
Show/Hide Group options, 187
SIGN() function, 339–340
slicer context menu, 149–150
slicers

considerations, 57, 58
CUBE() functions and, 377, 378–379
month names in, 357, 358
for pivot charts, 179
for pivot tables, 149–150
settings, 149–150

slices, removing, 56, 124
Sort and Filter group, 92
Sort dialog, 152, 153
Sort option, 158, 159

4 3 6 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

sorting items. See also filters
clearing sorts, 92
considerations, 29–30
measures, 158, 159
settings, 152–154
sorting on dates, 354–358
types of sorts, 92

SQL (Structured Query Language)
examples, 389–396
filtering via, 392
overview, 386–387
self-joins, 379, 394–395
stored procedures, 395–396
T-SQL, 390, 396–397

SQL queries, 385–397
SQL Server

considerations, 25
downloading evaluation edition, 4
importing from, 26–31, 68–73
SharePoint and, 380
writing SQL queries for, 386–397

SQL Server Analysis Services. See SSAS
SQL Server Integration Services (SSIS),

86, 87
SQL Server Management Studio (SSMS),

387, 414
SQL Server Northwind database. See

Northwind database
SQL Server Profiler, 66
SQL Server Reporting Services (SSRS),

83–84, 414
SQRT() function, 340–341
square root, 340–341
SSAS (SQL Server Analysis Services)

backup files, 381
considerations, 12, 24, 37
data mining, 380
importing from, 74–81

SSAS cubes, 50, 74, 80–82, 91, 400
SSAS database, 95, 99, 381, 414, 424
SSAS servers, 75, 99, 415–416, 419
SSIS (SQL Server Integration Services),

86, 87
SSMS (SQL Server Management Studio),

387, 414
SSRS (SQL Server Reporting Services),

83–84, 414

SSRS reports, 83–84, 380
star schemas, 12, 16, 50
STARTOFMONTH() function, 294–295
STARTOFQUARTER() function, 295
STARTOFYEAR() function, 295–296
static data, 109–110
statistical functions, 228–239
stored procedures, 395–396
strings. See also text

comparing, 304–305
concatenating, 116, 302–304
converting text to numbers, 317
converting to lowercase, 310–311
converting to uppercase, 316–317
finding, 305–306
formatting, 307–308
removing leading/trailing

characters, 315–316
repeating, 312–313
replacing text in, 312
substituting text in, 315

Structured Query Language. See SQL
styles. See also formatting

pivot charts, 185
pivot tables, 170–177
WordArt Styles, 186

Styles group, 174
SUBSTITUTE() function, 315
subtotals, 170–172, 359
Subtotals button, 170–171
subtraction operator (–), 116
Sum aggregation, 80–81
SUM() function, 117, 239–240, 341–342
summing data, 239–241, 341–342
SUMX() function, 240–241, 342–343
Switch Row/Column button, 185

T
table context menu, 143–144
Table Properties button, 101–103
tables. See also Excel tables; pivot tables

averaging values in, 228–229
cells. See cells
changing order of, 41
columns. See columns
creating PowerPivot table, 64
date tables, 350–354

dates in. See date/time functions
deleting, 25
denormalizing, 379
flattened, 420
importing. See importing
linked. See linked tables
nested, 419
pivot, 50–57
previewing, 30–31
properties, 101–103
refreshing, 89–90
rows. See rows
vs. lists, 35–36

templates, charts, 184
text. See also strings

alignment, 306–307
comparing, 304–305
concatenating, 116, 302–304
converting to dates, 245–246
converting to lowercase, 310–311
converting to numbers, 317
converting to uppercase, 316–317
finding, 305–306
formatting, 307–308
importing data from, 85–87
length, 309–310
parsing, 302–304
removing leading/trailing

characters, 315–316
removing substrings, 311
repeating strings, 312–313
replacing, 312
returning from column

beginning, 309
returning from column end,

313–314
substituting, 315
wrapping words, 304

Text data type, 91
text files, 24, 85–87, 89, 96
text functions, 301–317

BLANK() function, 117, 118,
205–206

changing case, 310–311, 316–317
comparing text/strings, 304–305
CONCATENATE() function, 116,

302–304

In d e x 4 3 7

concatenating text/strings, 116,
302–304

converting text to numbers, 317
described, 302
EXACT() function, 304–305
FIND() function, 305–306
finding text/strings, 305–306
FIXED() function, 306–307
FORMAT() function, 307–308
formatting text/strings, 307–308
LEFT() function, 309
LEN() function, 309–310
LOWER() function, 310–311
MID() function, 311
removing leading/trailing

characters, 315–316
removing substrings, 311
repeating strings, 312–313
REPLACE() function, 312
replacing text, 312
REPT() function, 312–313
RIGHT() function, 117, 313–314
SEARCH() function, 314
SUBSTITUTE() function, 315
substituting text, 315
TRIM() function, 315–316
UPPER() function, 316–17
VALUE() function, 317

Thousands Separator button, 92
time dimension, 263, 350–354
TIME() function, 254–255
time functions. See date/time functions
time intelligence functions, 261–299. See

also date/time functions
closing balance functions, 264–267
CLOSINGBALANCEMONTH()

function, 264–265
CLOSINGBALANCEQUARTER()

function, 265–266
CLOSINGBALANCEYEAR() function,

266–267
comparisons across time, 267–269
considerations, 263–264
converting numbers to times,

254–255
date data type, 91, 244, 265
date dimension, 263
DATEADD() function, 267–269, 367

DATESBETWEEN() function,
269–270

DATESINPERIOD() function,
270–271

DATESMTD() function, 271–272
DATESQTD() function, 272–273
DATESYTD() function, 274
described, 262
ENDOFMONTH() function, 275
ENDOFQUARTER() function,

275–276
ENDOFYEAR() function, 276–277
establishing date ranges, 269–271,

277–282
FIRSTDATE() function, 277–278
FIRSTNONBLANK() function,

278–279
LASTDATE() function, 279–281
LASTNONBLANK() function,

281–282, 359
moving backward/forward in time,

267–269, 288–289, 293–294
NEXTDAY() function, 282–283
NEXTMONTH() function, 283–284
NEXTQUARTER() function, 284
NEXTYEAR() function, 285
OPENINGBALANCEMONTH()

function, 285–286
OPENINGBALANCEQUARTER()

function, 286–287
OPENINGBALANCEYEAR() function,

287–288
PARALLELPERIOD() function,

288–289, 367
PREVIOUSDAY() function, 289–290
PREVIOUSMONTH() function,

290–291
PREVIOUSQUARTER() function,

291–292
PREVIOUSYEAR() function, 291–292
returning dates up to current date,

271–274
SAMEPERIODLASTYEAR() function,

293–294
STARTOFMONTH() function,

294–295
STARTOFQUARTER() function, 295

STARTOFYEAR() function, 295–296
time dimension, 263, 350–354
TOTALMTD() function, 296–297
TOTALQTD() function, 297–298
TOTALYTD() function, 298–299
year-on-year changes, 293–294
year-to-date totals, 298–299

TIMEVALUE() function, 255
TODAY() function, 256
Tools Group options, 169
TOTALMTD() function, 296–297
TOTALQTD() function, 297–298
Totals & Filters tab, 167, 168
TOTALYTD() function, 298–299
trend lines, 186
Trendline button, 186
Trig functions. See Math & Trig functions
TRIM() function, 315–316
TRUE() function, 223–224
TRUE logical operator, 116
true/false conditions

AND() function, 205
FALSE() function, 212–213
IF() function, 214
ISBLANK() function, 215–216
ISERROR() function, 216–217
ISLOGICAL() function, 217–218
ISNONTEXT() function, 218
ISTEXT() function, 219–220
NOT() function, 220–221
OR() function, 221
testing for, 205, 214, 217
TRUE() function, 223–224

TRUE/FALSE data type, 91
TRUNC() function, 325, 343–344
T-SQL, 390, 396–397
Type Group options, 184

U
Undo button, 103
Unhide button, 93
Update All button, 105
Update Mode button, 105
Update Selected button, 105
UPPER() function, 316–317
URLs, 37, 84. See also data feeds
user hierarchies, 408–409

4 3 8 P r a c t i c a l P o w e r P i v o t & D A X F o r m u l a s f o r E x c e l 2 0 1 0

V
Value Filters menu, 154–156
VALUE() function, 317
values

blank. See blank values
bucket, 391
display options, 159–165
duplicate, 210, 391
error, 167
filtering, 154–156
grand totals, 171, 172, 173
missing, 117–118
null, 117–118, 206, 304
ranking largest to smallest, 164, 166
running totals, 164, 165, 368–370
subtotals, 171–172
testing for, 117–118, 192, 206,

215–216

true/false. See true/false conditions
unique, 210

VALUES() function, 224–226
View group, 93
View ribbon, 173
View/Show group, 173
VLOOKUP() function, 118

W
WEEKDAY() function, 256–257
WEEKNUM() function, 257–258
Whole Number data type, 91
wildcard characters, 393
windows, working with, 22, 24
WordArt Styles Group options, 186
workbooks, Excel. See Excel workbooks
worksheets, Excel, 4, 5, 20, 63, 89, 396

X
X-functions, 123, 228, 229, 230, 342
.xlsx extension, 380

Y
YEAR() function, 258–259
YEARFRAC() function, 259–260
year-on-year changes, 293–294
year-to-date totals, 298–299

Z
.zip extension, 380

	Contents
	Foreword
	Acknowledgments
	Introduction
	Part I: PowerPivot
	Chapter 1 PowerPivot: Quick Start
	Chapter 2 PowerPivot: Overview
	Starting PowerPivot
	Importing from SQL Server
	Importing from Access
	Importing from Excel
	Importing from a Data Feed
	PowerPivot Window
	Checking Relationships
	Adding Columns
	A Quick Pivot Table
	A Very Quick Pivot Chart

	Chapter 3 PowerPivot: In-Depth
	PowerPivot Ribbon in Excel
	Home Ribbon in PowerPivot
	Design Ribbon in PowerPivot
	Linked Table Ribbon in PowerPivot

	Chapter 4 DAX: Overview
	What Is DAX?
	Where to Write DAX
	How to Write DAX
	Why Use the RELATED() Function?
	Why Use the CALCULATE() Function?
	Where to Go from Here

	Chapter 5 Pivot Tables and Pivot Charts: Overview
	Background to Pivot Reports
	Pivot Tables
	Pivot Charts

	Part II: DAX
	Chapter 6 Fundamental Functions: Filter, Logical, and Miscellaneous Functions
	ALL() 1/7
	ALL() 2/7
	ALL() 3/7
	ALL() 4/7
	ALL() 5/7
	ALL() 6/7
	ALL() 7/7
	ALLEXCEPT() 1/2
	ALLEXCEPT() 2/2
	ALLNOBLANKROW()
	AND()
	BLANK()
	CALCULATE()
	CALCULATETABLE()
	DISTINCT()
	EARLIER()
	EARLIEST()
	FALSE()
	FILTER()
	IF()
	IFERROR()
	ISBLANK()
	ISERROR()
	ISLOGICAL()
	ISNONTEXT()
	ISNUMBER()
	ISTEXT()
	NOT()
	OR()
	RELATED()
	RELATEDTABLE()
	TRUE()
	VALUES()

	Chapter 7 Aggregate Functions: Statistical Functions and SUM()/SUMX() Functions
	AVERAGE()
	AVERAGEX()
	AVERAGEA()
	COUNT()
	COUNTX()
	COUNTA()
	COUNTAX()
	COUNTBLANK()
	COUNTROWS()
	MAX()
	MAXX()
	MAXA()
	MIN()
	MINX()
	MINA()
	SUM() 1/2
	SUM() 2/2
	SUMX()

	Chapter 8 Date & Time Functions 1/2: Basic Functions
	DATE()
	DATEVALUE()
	DAY()
	EDATE()
	EOMONTH()
	HOUR()
	MINUTE()
	MONTH()
	NOW()
	There Is No QUARTER()
	SECOND()
	TIME()
	TIMEVALUE()
	TODAY()
	WEEKDAY()
	WEEKNUM()
	YEAR()
	YEARFRAC()

	Chapter 9 Date & Time Functions 2/2: Time Intelligence Functions
	CLOSINGBALANCEMONTH()
	CLOSINGBALANCEQUARTER()
	CLOSINGBALANCEYEAR()
	DATEADD()
	DATESBETWEEN()
	DATESINPERIOD()
	DATESMTD()
	DATESQTD()
	DATESYTD()
	ENDOFMONTH()
	ENDOFQUARTER()
	ENDOFYEAR()
	FIRSTDATE()
	FIRSTNONBLANK()
	LASTDATE()
	LASTNONBLANK()
	NEXTDAY()
	NEXTMONTH()
	NEXTQUARTER()
	NEXTYEAR()
	OPENINGBALANCEMONTH()
	OPENINGBALANCEQUARTER()
	OPENINGBALANCEYEAR()
	PARALLELPERIOD()
	PREVIOUSDAY()
	PREVIOUSMONTH()
	PREVIOUSQUARTER()
	PREVIOUSYEAR()
	SAMEPERIODLASTYEAR()
	STARTOFMONTH()
	STARTOFQUARTER()
	STARTOFYEAR()
	TOTALMTD()
	TOTALQTD()
	TOTALYTD()

	Chapter 10 Text Functions
	CONCATENATE() 1/2
	CONCATENATE() 2/2
	EXACT()
	FIND()
	FIXED()
	FORMAT()
	LEFT()
	LEN()
	LOWER()
	MID()
	REPLACE()
	REPT()
	RIGHT()
	SEARCH()
	SUBSTITUTE()
	TRIM()
	UPPER()
	VALUE()

	Chapter 11 Math & Trig Functions
	ABS()
	CEILING()
	EXP()
	FACT()
	FLOOR()
	INT()
	ISO.CEILING()
	LN()
	LOG()
	LOG10()
	MOD()
	MROUND()
	PI()
	POWER()
	QUOTIENT()
	RAND()
	RANDBETWEEN()
	ROUND()
	ROUNDDOWN()
	ROUNDUP()
	SIGN()
	SQRT()
	SUM()
	SUMX()
	TRUNC()

	Part III: PowerPivot and DAX Applied
	Chapter 12 A Few Ideas: PowerPivot and DAX Solutions
	Do You Have a Problem on Dates?
	Numbers That Don't Add Up
	Classic BI Solutions
	Predefining Filters and Sets
	PowerPivot Without Pivot Table Data
	Self-Joins
	Data Mining
	SSRS
	SharePoint
	Is It Really a Cube?
	How Old Is Nancy?

	Part IV: Appendixes: Queries for PowerPivot
	Appendix A: SQL Queries for PowerPivot
	Why Write SQL Queries?
	Where to Create and Test SQL Queries
	Where to Use SQL Queries in PowerPivot
	SQL Examples
	SQL Queries for Excel

	Appendix B: MDX Queries for PowerPivot
	Why Write MDX Queries?
	Where to Create and Test MDX Queries
	Where to Use MDX Queries in PowerPivot
	MDX Examples

	Appendix C: DMX Queries for PowerPivot
	Why Write DMX Queries?
	Where to Create and Test DMX Queries
	Where to Use DMX Queries in PowerPivot
	DMX Examples

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

